- NumPy 教程
- NumPy - 首页
- NumPy - 简介
- NumPy - 环境
- NumPy 数组
- NumPy - Ndarray 对象
- NumPy - 数据类型
- NumPy 创建和操作数组
- NumPy - 数组创建例程
- NumPy - 数组操作
- NumPy - 从现有数据创建数组
- NumPy - 从数值范围创建数组
- NumPy - 遍历数组
- NumPy - 重塑数组
- NumPy - 连接数组
- NumPy - 堆叠数组
- NumPy - 分割数组
- NumPy - 展平数组
- NumPy - 转置数组
- NumPy 索引和切片
- NumPy - 索引和切片
- NumPy - 高级索引
- NumPy 数组属性和操作
- NumPy - 数组属性
- NumPy - 数组形状
- NumPy - 数组大小
- NumPy - 数组步长
- NumPy - 数组元素大小
- NumPy - 广播
- NumPy - 算术运算
- NumPy - 数组加法
- NumPy - 数组减法
- NumPy - 数组乘法
- NumPy - 数组除法
- NumPy 高级数组操作
- NumPy - 交换数组的轴
- NumPy - 字节交换
- NumPy - 复制和视图
- NumPy - 元素级数组比较
- NumPy - 过滤数组
- NumPy - 连接数组
- NumPy - 排序、搜索和计数函数
- NumPy - 搜索数组
- NumPy - 数组的并集
- NumPy - 查找唯一行
- NumPy - 创建日期时间数组
- NumPy - 二元运算符
- NumPy - 字符串函数
- NumPy - 数学函数
- NumPy - 统计函数
- NumPy - 矩阵库
- NumPy - 线性代数
- NumPy - Matplotlib
- NumPy - 使用 Matplotlib 绘制直方图
- NumPy - NumPy 的 I/O
- NumPy 排序和高级操作
- NumPy - 排序数组
- NumPy - 沿轴排序
- NumPy - 使用花式索引排序
- NumPy - 结构化数组
- NumPy - 创建结构化数组
- NumPy - 操作结构化数组
- NumPy - 字段访问
- NumPy - 记录数组
- Numpy - 加载数组
- Numpy - 保存数组
- NumPy - 向数组追加值
- NumPy - 交换数组的列
- NumPy - 向数组插入轴
- NumPy 处理缺失数据
- NumPy - 处理缺失数据
- NumPy - 识别缺失值
- NumPy - 删除缺失数据
- NumPy - 填充缺失数据
- NumPy 性能优化
- NumPy - 使用数组进行性能优化
- NumPy - 使用数组进行向量化
- NumPy - 数组的内存布局
- Numpy 线性代数
- NumPy - 线性代数
- NumPy - 矩阵库
- NumPy - 矩阵加法
- NumPy - 矩阵减法
- NumPy - 矩阵乘法
- NumPy - 元素级矩阵运算
- NumPy - 点积
- NumPy - 矩阵求逆
- NumPy - 行列式计算
- NumPy - 特征值
- NumPy - 特征向量
- NumPy - 奇异值分解
- NumPy - 求解线性方程组
- NumPy - 矩阵范数
- NumPy 元素级矩阵运算
- NumPy - 求和
- NumPy - 平均值
- NumPy - 中位数
- NumPy - 最小值
- NumPy - 最大值
- NumPy 集合运算
- NumPy - 唯一元素
- NumPy - 交集
- NumPy - 并集
- NumPy - 差集
- NumPy 有用资源
- NumPy 编译器
- NumPy - 快速指南
- NumPy - 有用资源
- NumPy - 讨论
NumPy - 统计函数
NumPy 有许多有用的统计函数,用于从数组中给定的元素中查找最小值、最大值、百分位数、标准差和方差等。这些函数解释如下:
numpy.amin() 和 numpy.amax()
这些函数返回给定数组中沿指定轴的元素的最小值和最大值。
示例
import numpy as np a = np.array([[3,7,5],[8,4,3],[2,4,9]]) print 'Our array is:' print a print '\n' print 'Applying amin() function:' print np.amin(a,1) print '\n' print 'Applying amin() function again:' print np.amin(a,0) print '\n' print 'Applying amax() function:' print np.amax(a) print '\n' print 'Applying amax() function again:' print np.amax(a, axis = 0)
它将产生以下输出:
Our array is: [[3 7 5] [8 4 3] [2 4 9]] Applying amin() function: [3 3 2] Applying amin() function again: [2 4 3] Applying amax() function: 9 Applying amax() function again: [8 7 9]
numpy.ptp()
numpy.ptp() 函数返回沿轴的值的范围(最大值-最小值)。
import numpy as np a = np.array([[3,7,5],[8,4,3],[2,4,9]]) print 'Our array is:' print a print '\n' print 'Applying ptp() function:' print np.ptp(a) print '\n' print 'Applying ptp() function along axis 1:' print np.ptp(a, axis = 1) print '\n' print 'Applying ptp() function along axis 0:' print np.ptp(a, axis = 0)
它将产生以下输出:
Our array is: [[3 7 5] [8 4 3] [2 4 9]] Applying ptp() function: 7 Applying ptp() function along axis 1: [4 5 7] Applying ptp() function along axis 0: [6 3 6]
numpy.percentile()
百分位数(或百分位数)是统计学中使用的一种度量,表示一组观测值中低于给定百分比的观测值的数值。numpy.percentile() 函数接受以下参数。
numpy.percentile(a, q, axis)
其中,
序号 | 参数和描述 |
---|---|
1 | a 输入数组 |
2 | q 要计算的百分位数必须介于 0-100 之间 |
3 | axis 要计算百分位数的轴 |
示例
import numpy as np a = np.array([[30,40,70],[80,20,10],[50,90,60]]) print 'Our array is:' print a print '\n' print 'Applying percentile() function:' print np.percentile(a,50) print '\n' print 'Applying percentile() function along axis 1:' print np.percentile(a,50, axis = 1) print '\n' print 'Applying percentile() function along axis 0:' print np.percentile(a,50, axis = 0)
它将产生以下输出:
Our array is: [[30 40 70] [80 20 10] [50 90 60]] Applying percentile() function: 50.0 Applying percentile() function along axis 1: [ 40. 20. 60.] Applying percentile() function along axis 0: [ 50. 40. 60.]
numpy.median()
中位数定义为将数据样本的上半部分与下半部分分隔的值。numpy.median() 函数的使用方式如下面的程序所示。
示例
import numpy as np a = np.array([[30,65,70],[80,95,10],[50,90,60]]) print 'Our array is:' print a print '\n' print 'Applying median() function:' print np.median(a) print '\n' print 'Applying median() function along axis 0:' print np.median(a, axis = 0) print '\n' print 'Applying median() function along axis 1:' print np.median(a, axis = 1)
它将产生以下输出:
Our array is: [[30 65 70] [80 95 10] [50 90 60]] Applying median() function: 65.0 Applying median() function along axis 0: [ 50. 90. 60.] Applying median() function along axis 1: [ 65. 80. 60.]
numpy.mean()
算术平均值是沿轴的元素之和除以元素的数量。numpy.mean() 函数返回数组中元素的算术平均值。如果指定了轴,则沿该轴计算。
示例
import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print 'Our array is:' print a print '\n' print 'Applying mean() function:' print np.mean(a) print '\n' print 'Applying mean() function along axis 0:' print np.mean(a, axis = 0) print '\n' print 'Applying mean() function along axis 1:' print np.mean(a, axis = 1)
它将产生以下输出:
Our array is: [[1 2 3] [3 4 5] [4 5 6]] Applying mean() function: 3.66666666667 Applying mean() function along axis 0: [ 2.66666667 3.66666667 4.66666667] Applying mean() function along axis 1: [ 2. 4. 5.]
numpy.average()
加权平均值是由每个分量乘以反映其重要性的因子得到的平均值。numpy.average() 函数根据另一个数组中给出的相应权重计算数组中元素的加权平均值。该函数可以具有轴参数。如果未指定轴,则数组将被展平。
考虑一个数组 [1,2,3,4] 和相应的权重 [4,3,2,1],加权平均值是通过将对应元素的乘积相加并将其和除以权重之和来计算的。
加权平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)
示例
import numpy as np a = np.array([1,2,3,4]) print 'Our array is:' print a print '\n' print 'Applying average() function:' print np.average(a) print '\n' # this is same as mean when weight is not specified wts = np.array([4,3,2,1]) print 'Applying average() function again:' print np.average(a,weights = wts) print '\n' # Returns the sum of weights, if the returned parameter is set to True. print 'Sum of weights' print np.average([1,2,3, 4],weights = [4,3,2,1], returned = True)
它将产生以下输出:
Our array is: [1 2 3 4] Applying average() function: 2.5 Applying average() function again: 2.0 Sum of weights (2.0, 10.0)
在多维数组中,可以指定计算的轴。
示例
import numpy as np a = np.arange(6).reshape(3,2) print 'Our array is:' print a print '\n' print 'Modified array:' wt = np.array([3,5]) print np.average(a, axis = 1, weights = wt) print '\n' print 'Modified array:' print np.average(a, axis = 1, weights = wt, returned = True)
它将产生以下输出:
Our array is: [[0 1] [2 3] [4 5]] Modified array: [ 0.625 2.625 4.625] Modified array: (array([ 0.625, 2.625, 4.625]), array([ 8., 8., 8.]))
标准差
标准差是平均值的平方偏差的平均值的平方根。标准差的公式如下:
std = sqrt(mean(abs(x - x.mean())**2))
如果数组是 [1, 2, 3, 4],则其平均值为 2.5。因此,平方偏差为 [2.25, 0.25, 0.25, 2.25],其平均值的平方根除以 4,即 sqrt (5/4) 为 1.1180339887498949。
示例
import numpy as np print np.std([1,2,3,4])
它将产生以下输出:
1.1180339887498949
方差
方差是平方偏差的平均值,即 mean(abs(x - x.mean())**2)。换句话说,标准差是方差的平方根。
示例
import numpy as np print np.var([1,2,3,4])
它将产生以下输出:
1.25