因式分解下列各式
1).$ 66(y^4-5y^3-24y^2) +6y(y-8)$
2).$ 36mn(25m^2- 49n^2)+ 4mn(5m + 7n)$
3). $x(x+2)(x+4)(x+6) + x(x+ 2)$
解答
1). $66(y^{4} -5y^{3}-24y^{2}) +6y(y-8)$
= $66y^{2}(y^{2} -5y-24) +6y(y-8)$
= $66y^{2}(y-8)(y + 3) + 6y(y -8)$
= $6y(y-8)[11y(y+3) + 1]$
= $6y(y - 8)(11y^{2} + 33y + 1)$
2) $36mn(25m^{2} - 49n^{2})+ 4mn(5m + 7n)$
= $36mn(5m + 7n)(5m - 7n)+ 4mn(5m + 7n)$
= $4mn(5m + 7n)[9(5m - 7n) + 1]$
= $4mn(5m + 7n)(45m-63n)$
3)$x(x+2)(x+4)(x+6) + x(x+ 2)$
= $x(x+2)[(x+4)(x+6) + 1]$
= $x(x+2)(x^{2} + 10x + 25)$
- 相关文章
- 因式分解:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- 因式分解:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 验证:(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- 因式分解表达式 $x^3-y^2+x-x^2y^2$。
- 因式分解:$x^4 + x^2y^2 + y^4$
- 化简下列每个表达式:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- 因式分解:\( \frac{8}{27} x^{3}+1+\frac{4}{3} x^{2}+2 x \)
- 因式分解:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- 化简:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( xy-x-y+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 通过化简为线性方程组解下列方程组:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 使用合适的恒等式求下列乘积:(i) \( (x+4)(x+10) \)(ii) \( (x+8)(x-10) \)(iii) \( (3 x+4)(3 x-5) \)(iv) \( \left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) \)(v) \( (3-2 x)(3+2 x) \)
- 化简:\( 4(x+y)-6(x+y)^{2} \)
- 求 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)