如果一个三角形的顶点是$(1, 1)$,并且通过该顶点的边的中点是$(-2, 3)$和$(5, 2)$,求其他顶点。


已知

三角形的一个顶点是$(1, 1)$,并且通过该顶点的边的中点是$(-2, 3)$和$(5, 2)$。

要求

我们必须找到其他顶点。

解答

设顶点$A$的坐标为$(1, 1)$,并且$AB$和$AC$的中点分别为$D (-2, 3)$和$E (5, 2)$。
设三角形的另外两个顶点的坐标为$B (x_1, y_1)$和$C(x_2, y_2)$。


\( \mathrm{D} \)是\( \mathrm{AB} \)的中点。

这意味着,

D 的坐标\( \mathrm{D} (-2, 3)=(\frac{1+x_1}{2}, \frac{1+y_1}{2}) \)

\( \Rightarrow 2(-2)=1+x_1 \) 和 \( 2(3)=1+y_1 \)
\( \Rightarrow x_{1}=-4-1=-5 \) 和 \( y_{1}=6-1=5 \)
B 的坐标为$(-5,5)$。

类似地,

\( \mathrm{E} \)是\( \mathrm{AC} \)的中点。

E 的坐标\( \mathrm{E} (5, 2)=(\frac{1+x_2}{2}, \frac{1+y_2}{2}) \)

\( \Rightarrow 1+x_{2}=5(2) \) 和 \( 1+y_{2}=2(2) \)
\(  x_{2}=10-1=9 \) 和 \( y_{2}=4-1=3 \)
C 的坐标为$(9,3)$。

其他两个顶点是$(-5,5)$和$(9,3)$。

更新于: 2022年10月10日

56 次浏览

开启你的职业生涯

通过完成课程获得认证

开始学习
广告