如图所示,AB和CD是圆O的两条互相垂直的直径。OB是小圆的直径。如果OA = 7厘米,求阴影区域的面积。[使用π = 22/7]。


已知:一个以O为圆心,直径为AB和CD的大圆。OB是小圆的直径,并且OA = 7厘米。

求解:求阴影区域的面积

解答
AB和CD是以O为圆心的圆的直径。 (圆的半径)


OA = OB = OC = OD = 7厘米

直径为AB的圆的面积 = 2πr²

= 2 × 22/7 × 7 × 7

= 308 平方厘米

另一个阴影圆的直径为OB = 7厘米

阴影圆的半径 = 7/2 厘米

直径为OB的阴影圆的面积 = πr²

= 2 × 22/7 × 7/2 × 7/2

= 77/2 平方厘米

三角形ACD的面积 = 1/2 × 底 × 高

= 1/2 × 14 × 7

= 49 平方厘米

直径为AB的半圆的面积:

= 308/2

= 154 平方厘米

因此,阴影区域的面积 = 直径为OB的圆的面积 + 半圆的面积 - 三角形ACD的面积

= 77/2 + 154 - 49

= 66.5 平方厘米

因此,阴影区域的面积为66.5平方厘米。

更新于:2022年10月10日

250 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告