- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Show that the points \( (0,0),(7,0),(7,5) \) and \( (0,5) \) are the vertices of a rectangle.
Given:
Given points are \( (0,0),(7,0),(7,5) \) and \( (0,5) \).
To do:
We have to show that the points \( (0,0),(7,0),(7,5) \) and \( (0,5) \) are the vertices of a rectangle.
Solution:
Let \( \mathrm{ABCD} \) be a rectangle whose vertices are \( \mathrm{A}(0,0), \mathrm{B}(7,0), \mathrm{C}(7,5) \) and \( \mathrm{D}(0,5) \).
We know that,
The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).
Therefore,
\( \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \)
\( =\sqrt{(7-0)^{2}+(0-0)^{2}} \)
\( =\sqrt{(7)^{2}+(0)^{2}} \)
\( =\sqrt{49} \)
\( =7 \)
\( \mathrm{CD}=\sqrt{(0-7)^{2}+(5-5)^{2}} \)
\( =\sqrt{(-7)^{2}+(0)^{2}} \)
\( =\sqrt{49} \)
\( =7 \)
\( \mathrm{AD}=\sqrt{(0-0)^{2}+(5-0)^{2}} \)
\( =\sqrt{(0)^{2}+(5)^{2}} \)
\( =\sqrt{25} \)
\( =5 \)
\( \mathrm{BC}=\sqrt{(7-7)^{2}+(5-0)^{2}} \)
\( =\sqrt{(0)^{2}+(5)^{2}} \)
\( =\sqrt{25} \)
\( =5 \)
\( \mathrm{AC}=\sqrt{(7-0)^{2}+(5-0)^{2}} \)
\( =\sqrt{(7)^{2}+(5)^{2}} \)
\( =\sqrt{49+25} \)
\( =\sqrt{74} \)
\( \mathrm{BD}=\sqrt{(0-7)^{2}+(5-0)^{2}} \)
\( =\sqrt{(7)^{2}+(5)^{2}} \)
\( =\sqrt{49+25} \)
\( =\sqrt{74} \)
$AB = CD$ and $AD = BC$
$AC = BD$
Here, opposite sides are equal and the diagonals are equal.
Therefore, $ABCD$ is a rectangle.