- 自动机理论教程
- 自动机理论 - 首页
- 自动机理论 - 入门
- 自动机理论 - 历史
- 自动机理论 - 应用
- 自动机理论术语
- 自动机中字符串的基础知识
- 自动机的集合论
- 语言和文法
- 计算理论中的文法
- 由文法生成的语言
- 乔姆斯基文法分类
- 有限自动机
- 确定性有限自动机 (DFA)
- 非确定性有限自动机 (NFA)
- 从NFA到DFA的转换
- DFA的最小化
- Moore机与Mealy机
- DFA的补集
- 正则表达式
- 自动机中的正则表达式
- 自动机中的Arden定理
- 将正则表达式转换为有限自动机
- 正则文法的泵引理
- 计算理论中的正则集
- 上下文无关文法
- 上下文无关文法 (CFG)
- 上下文无关文法中的二义性
- 上下文无关语言的闭包性质
- 简化上下文无关文法
- 乔姆斯基范式 (CNF)
- 格雷巴赫范式 (GNF)
- 上下文无关文法的泵引理
- 下推自动机
- 下推自动机 (PDA)
- 下推自动机的接受
- 由CFG构造PDA
- 下推自动机和语法分析
- 图灵机
- 图灵机 (TM) 基础
- 图灵机接受的语言
- 多带图灵机
- 多轨迹图灵机
- 非确定性图灵机
- 半无限带图灵机
- 线性界自动机 (LBA)
- 可计算性和不可判定性
- 图灵语言的可判定性
- 不可判定语言
- 图灵机停机问题
- 计算理论中的Rice定理
- Post对应问题 (PCP)
- 自动机理论资源
- 自动机理论 - 快速指南
- 自动机理论 - 资源
- 自动机理论 - 讨论
DFA补集
如果 (Q, ∑, δ, q0, F) 是一个接受语言 L 的 DFA,那么该 DFA 的补集可以通过交换其接受状态和非接受状态来获得。
我们来看一个例子,并在下面详细说明:
此 DFA 接受语言
L = {a, aa, aaa , ............. }
在字母表上
∑ = {a, b}
所以,RE = a+。
现在我们将交换其接受状态和非接受状态,并将得到以下结果:
此 DFA 接受语言
Ľ = {ε, b, ab ,bb,ba, ............... }
在字母表上
∑ = {a, b}
注意 - 如果要对 NFA 求补集,则必须先将其转换为 DFA,然后像之前的方法一样交换状态。
广告