在△ABC中,D是边BC的中点。AD被E点平分,BE的延长线交AC于X点。证明BE:EX=3:1。
已知
D是△ABC边BC的中点。AD被E点平分,BE的延长线交AC于X点。
要求
我们必须证明BE:EX=3:1。
解答
作图:过D作DY平行于BX。
在△ADY中,根据中点定理
$EX=\frac{DY}{2}$
在△BCX中,根据中点定理
$DY=\frac{BX}{2}$
因此,
$EX=\frac{BX}{4}$
$4EX=BX$
$4EX=BE+EX$
$3EX=BE$
$\frac{BE}{EX}=\frac{3}{1}$
$BE:EX=3:1$
证毕。
广告