从塔底仰望建筑物顶部,仰角为 30o;从建筑物底部仰望塔顶,仰角为 60o。如果塔高 50 m,求建筑物的高度。
已知
从塔底仰望建筑物顶部,仰角为 30∘,从建筑物底部仰望塔顶,仰角为 60∘。
塔高 50 m。
求解
我们需要求出建筑物的高度。
解:
设塔高为 AB,建筑物高为 CD。
根据图示:
AB=50 m,∠BCA=60∘,∠DAC=30∘
设建筑物高度为 CD=h m,建筑物与塔之间的距离为 CA=x m。
我们知道:
tanθ= 对边 邻边
= AB CA
⇒tan60∘=50x
⇒√3=50x
⇒x=50√3 m.........(i)
同样地:
tanθ= 对边 邻边
= DC AC
⇒tan30∘=hx
⇒1√3=h50√3 [由 (i) 式]
⇒1√3×50√3=h m
⇒h=503 m
因此,建筑物的高度为 503 m。
广告