- Python Pandas 教程
- Python Pandas - 首页
- Python Pandas - 简介
- Python Pandas - 环境搭建
- Python Pandas - 基础知识
- Python Pandas - 数据结构简介
- Python Pandas - 索引对象
- Python Pandas - 面板
- Python Pandas - 基本功能
- Python Pandas - 索引与数据选择
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - 切片 Series 对象
- Python Pandas - Series 对象的属性
- Python Pandas - Series 对象的算术运算
- Python Pandas - 将 Series 转换为其他对象
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - 访问 DataFrame
- Python Pandas - 切片 DataFrame 对象
- Python Pandas - 修改 DataFrame
- Python Pandas - 从 DataFrame 中删除行
- Python Pandas - DataFrame 的算术运算
- Python Pandas - I/O 工具
- Python Pandas - I/O 工具
- Python Pandas - 使用 CSV 格式
- Python Pandas - 读取和写入 JSON 文件
- Python Pandas - 从 Excel 文件读取数据
- Python Pandas - 将数据写入 Excel 文件
- Python Pandas - 处理 HTML 数据
- Python Pandas - 剪贴板
- Python Pandas - 使用 HDF5 格式
- Python Pandas - 与 SQL 的比较
- Python Pandas - 数据处理
- Python Pandas - 排序
- Python Pandas - 重索引
- Python Pandas - 迭代
- Python Pandas - 连接
- Python Pandas - 统计函数
- Python Pandas - 描述性统计
- Python Pandas - 处理文本数据
- Python Pandas - 函数应用
- Python Pandas - 选项和自定义
- Python Pandas - 窗口函数
- Python Pandas - 聚合
- Python Pandas - 合并/连接
- Python Pandas - 多级索引
- Python Pandas - 多级索引基础
- Python Pandas - 使用多级索引进行索引
- Python Pandas - 使用多级索引的高级重索引
- Python Pandas - 重命名多级索引标签
- Python Pandas - 对多级索引进行排序
- Python Pandas - 二元运算
- Python Pandas - 二元比较运算
- Python Pandas - 布尔索引
- Python Pandas - 布尔掩码
- Python Pandas - 数据重塑与透视表
- Python Pandas - 透视表
- Python Pandas - 堆叠与解堆叠
- Python Pandas - 熔化
- Python Pandas - 计算虚拟变量
- Python Pandas - 分类数据
- Python Pandas - 分类数据
- Python Pandas - 分类数据的排序和排序
- Python Pandas - 比较分类数据
- Python Pandas - 处理缺失数据
- Python Pandas - 缺失数据
- Python Pandas - 填充缺失数据
- Python Pandas - 缺失值的插值
- Python Pandas - 删除缺失数据
- Python Pandas - 对缺失数据进行计算
- Python Pandas - 处理重复数据
- Python Pandas - 重复数据
- Python Pandas - 计数和检索唯一元素
- Python Pandas - 重复标签
- Python Pandas - 分组与聚合
- Python Pandas - GroupBy
- Python Pandas - 时间序列数据
- Python Pandas - 日期功能
- Python Pandas - 时间差
- Python Pandas - 稀疏数据结构
- Python Pandas - 稀疏数据
- Python Pandas - 可视化
- Python Pandas - 可视化
- Python Pandas - 其他概念
- Python Pandas - 注意事项与陷阱
- Python Pandas 有用资源
- Python Pandas - 快速指南
- Python Pandas - 有用资源
- Python Pandas - 讨论
Python Pandas - 注意事项与陷阱
Caveats 意为警告,gotcha 意为未预见到的问题。
在 Pandas 中使用 If/Truth 语句
Pandas 遵循 numpy 的约定,即当您尝试将某些内容转换为bool时会引发错误。这发生在if或when使用布尔运算符and、or或not时。结果尚不清楚。它应该是 True 因为它不是零长度吗?False 因为它存在 False 值吗?不清楚,因此,Pandas 会引发ValueError -
import pandas as pd if pd.Series([False, True, False]): print 'I am True'
其输出如下所示 -
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool() a.item(),a.any() or a.all().
在if条件中,不清楚如何处理它。错误提示是否使用None或其中任何一个。
import pandas as pd if pd.Series([False, True, False]).any(): print("I am any")
其输出如下所示 -
I am any
要在布尔上下文中评估单元素 Pandas 对象,请使用.bool()方法 -
import pandas as pd print pd.Series([True]).bool()
其输出如下所示 -
True
按位布尔
像 == 和!= 这样的按位布尔运算符将返回一个布尔序列,这几乎总是需要的。
import pandas as pd s = pd.Series(range(5)) print s==4
其输出如下所示 -
0 False 1 False 2 False 3 False 4 True dtype: bool
isin 操作
这将返回一个布尔序列,显示 Series 中的每个元素是否完全包含在传递的值序列中。
import pandas as pd s = pd.Series(list('abc')) s = s.isin(['a', 'c', 'e']) print s
其输出如下所示 -
0 True 1 False 2 True dtype: bool
重索引与 ix 陷阱
许多用户会发现自己使用ix 索引功能作为从 Pandas 对象中选择数据的简洁方法 -
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'],index=list('abcdef')) print df print df.ix[['b', 'c', 'e']]
其输出如下所示 -
one two three four a -1.582025 1.335773 0.961417 -1.272084 b 1.461512 0.111372 -0.072225 0.553058 c -1.240671 0.762185 1.511936 -0.630920 d -2.380648 -0.029981 0.196489 0.531714 e 1.846746 0.148149 0.275398 -0.244559 f -1.842662 -0.933195 2.303949 0.677641 one two three four b 1.461512 0.111372 -0.072225 0.553058 c -1.240671 0.762185 1.511936 -0.630920 e 1.846746 0.148149 0.275398 -0.244559
当然,在这种情况下,这与使用reindex方法完全等效 -
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'],index=list('abcdef')) print df print df.reindex(['b', 'c', 'e'])
其输出如下所示 -
one two three four a 1.639081 1.369838 0.261287 -1.662003 b -0.173359 0.242447 -0.494384 0.346882 c -0.106411 0.623568 0.282401 -0.916361 d -1.078791 -0.612607 -0.897289 -1.146893 e 0.465215 1.552873 -1.841959 0.329404 f 0.966022 -0.190077 1.324247 0.678064 one two three four b -0.173359 0.242447 -0.494384 0.346882 c -0.106411 0.623568 0.282401 -0.916361 e 0.465215 1.552873 -1.841959 0.329404
有些人可能会根据此得出ix和reindex100% 等效的结论。除了整数索引的情况外,这是正确的。例如,上述操作可以表示为 -
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'],index=list('abcdef')) print df print df.ix[[1, 2, 4]] print df.reindex([1, 2, 4])
其输出如下所示 -
one two three four a -1.015695 -0.553847 1.106235 -0.784460 b -0.527398 -0.518198 -0.710546 -0.512036 c -0.842803 -1.050374 0.787146 0.205147 d -1.238016 -0.749554 -0.547470 -0.029045 e -0.056788 1.063999 -0.767220 0.212476 f 1.139714 0.036159 0.201912 0.710119 one two three four b -0.527398 -0.518198 -0.710546 -0.512036 c -0.842803 -1.050374 0.787146 0.205147 e -0.056788 1.063999 -0.767220 0.212476 one two three four 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 4 NaN NaN NaN NaN
务必记住,reindex 仅为严格的标签索引。在索引包含整数和字符串等病态情况下,这可能会导致一些潜在的意外结果。
广告