- Python Pandas 教程
- Python Pandas - 首页
- Python Pandas - 简介
- Python Pandas - 环境设置
- Python Pandas - 基础
- Python Pandas - 数据结构介绍
- Python Pandas - 索引对象
- Python Pandas - 面板 (Panel)
- Python Pandas - 基本功能
- Python Pandas - 索引和数据选择
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Series 对象切片
- Python Pandas - Series 对象的属性
- Python Pandas - Series 对象的算术运算
- Python Pandas - 将 Series 转换为其他对象
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - 访问 DataFrame
- Python Pandas - DataFrame 对象切片
- Python Pandas - 修改 DataFrame
- Python Pandas - 从 DataFrame 中删除行
- Python Pandas - DataFrame 的算术运算
- Python Pandas - I/O 工具
- Python Pandas - I/O 工具
- Python Pandas - 使用 CSV 格式
- Python Pandas - 读取和写入 JSON 文件
- Python Pandas - 从 Excel 文件读取数据
- Python Pandas - 将数据写入 Excel 文件
- Python Pandas - 使用 HTML 数据
- Python Pandas - 剪贴板
- Python Pandas - 使用 HDF5 格式
- Python Pandas - 与 SQL 的比较
- Python Pandas - 数据处理
- Python Pandas - 排序
- Python Pandas - 重新索引
- Python Pandas - 迭代
- Python Pandas - 级联
- Python Pandas - 统计函数
- Python Pandas - 描述性统计
- Python Pandas - 使用文本数据
- Python Pandas - 函数应用
- Python Pandas - 选项和自定义
- Python Pandas - 窗口函数
- Python Pandas - 聚合
- Python Pandas - 合并/连接
- Python Pandas - 多级索引 (MultiIndex)
- Python Pandas - 多级索引基础
- Python Pandas - 使用多级索引进行索引
- Python Pandas - 使用多级索引进行高级重新索引
- Python Pandas - 重命名多级索引标签
- Python Pandas - 对多级索引进行排序
- Python Pandas - 二元运算
- Python Pandas - 二元比较运算
- Python Pandas - 布尔索引
- Python Pandas - 布尔掩码
- Python Pandas - 数据重塑和透视
- Python Pandas - 透视表
- Python Pandas - 堆叠和取消堆叠
- Python Pandas - 熔化 (Melting)
- Python Pandas - 计算虚拟变量
- Python Pandas - 分类数据
- Python Pandas - 分类数据
- Python Pandas - 分类数据的排序和排列
- Python Pandas - 分类数据的比较
- Python Pandas - 处理缺失数据
- Python Pandas - 缺失数据
- Python Pandas - 填充缺失数据
- Python Pandas - 缺失值的插值
- Python Pandas - 删除缺失数据
- Python Pandas - 缺失数据的计算
- Python Pandas - 处理重复项
- Python Pandas - 重复数据
- Python Pandas - 计数和检索唯一元素
- Python Pandas - 重复标签
- Python Pandas - 分组和聚合
- Python Pandas - GroupBy
- Python Pandas - 时间序列数据
- Python Pandas - 日期功能
- Python Pandas - 时间差 (Timedelta)
- Python Pandas - 稀疏数据结构
- Python Pandas - 稀疏数据
- Python Pandas - 可视化
- Python Pandas - 可视化
- Python Pandas - 其他概念
- Python Pandas - 注意事项和陷阱
- Python Pandas - 有用资源
- Python Pandas - 快速指南
- Python Pandas - 有用资源
- Python Pandas - 讨论
Python Pandas - 合并/连接
Pandas 具有功能齐全、高性能的内存内连接操作,其用法与 SQL 等关系数据库非常相似。
Pandas 提供单个函数 `merge` 作为 DataFrame 对象之间所有标准数据库连接操作的入口点 -
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
这里,我们使用了以下参数:
**left** - 一个 DataFrame 对象。
**right** - 另一个 DataFrame 对象。
**on** - 要连接的列(名称)。必须同时出现在左、右 DataFrame 对象中。
**left_on** - 从左 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。
**right_on** - 从右 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。
**left_index** - 如果为 **True**,则使用左 DataFrame 的索引(行标签)作为其连接键。对于具有多级索引(分层)的 DataFrame,级别数必须与右 DataFrame 的连接键数匹配。
**right_index** - 与右 DataFrame 的 **left_index** 用法相同。
**how** - 'left'、'right'、'outer'、'inner' 之一。默认为 inner。每种方法的描述如下。
**sort** - 按字典序对结果 DataFrame 的连接键进行排序。默认为 True,设置为 False 将在许多情况下显著提高性能。
现在让我们创建两个不同的 DataFrame 并对其执行合并操作。
# import the pandas library import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print left print right
其**输出**如下:
Name id subject_id 0 Alex 1 sub1 1 Amy 2 sub2 2 Allen 3 sub4 3 Alice 4 sub6 4 Ayoung 5 sub5 Name id subject_id 0 Billy 1 sub2 1 Brian 2 sub4 2 Bran 3 sub3 3 Bryce 4 sub6 4 Betty 5 sub5
根据键合并两个 DataFrame
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left,right,on='id')
其**输出**如下:
Name_x id subject_id_x Name_y subject_id_y 0 Alex 1 sub1 Billy sub2 1 Amy 2 sub2 Brian sub4 2 Allen 3 sub4 Bran sub3 3 Alice 4 sub6 Bryce sub6 4 Ayoung 5 sub5 Betty sub5
根据多个键合并两个 DataFrame
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left,right,on=['id','subject_id'])
其**输出**如下:
Name_x id subject_id Name_y 0 Alice 4 sub6 Bryce 1 Ayoung 5 sub5 Betty
使用 'how' 参数合并
`how` 参数用于指定如何确定结果表中包含哪些键。如果键组合不出现在左表或右表中,则连接表中的值将为 NA。
以下是 `how` 选项及其 SQL 等效名称的摘要:
合并方法 | SQL 等效名称 | 描述 |
---|---|---|
left | LEFT OUTER JOIN | 使用左对象的键 |
right | RIGHT OUTER JOIN | 使用右对象的键 |
outer | FULL OUTER JOIN | 使用键的并集 |
inner | INNER JOIN | 使用键的交集 |
左连接
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='left')
其**输出**如下:
Name_x id_x subject_id Name_y id_y 0 Alex 1 sub1 NaN NaN 1 Amy 2 sub2 Billy 1.0 2 Allen 3 sub4 Brian 2.0 3 Alice 4 sub6 Bryce 4.0 4 Ayoung 5 sub5 Betty 5.0
右连接
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='right')
其**输出**如下:
Name_x id_x subject_id Name_y id_y 0 Amy 2.0 sub2 Billy 1 1 Allen 3.0 sub4 Brian 2 2 Alice 4.0 sub6 Bryce 4 3 Ayoung 5.0 sub5 Betty 5 4 NaN NaN sub3 Bran 3
外连接
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, how='outer', on='subject_id')
其**输出**如下:
Name_x id_x subject_id Name_y id_y 0 Alex 1.0 sub1 NaN NaN 1 Amy 2.0 sub2 Billy 1.0 2 Allen 3.0 sub4 Brian 2.0 3 Alice 4.0 sub6 Bryce 4.0 4 Ayoung 5.0 sub5 Betty 5.0 5 NaN NaN sub3 Bran 3.0
内连接
连接将在索引上执行。连接操作遵守其调用的对象。因此,`a.join(b)` 不等于 `b.join(a)`。
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='inner')
其**输出**如下:
Name_x id_x subject_id Name_y id_y 0 Amy 2 sub2 Billy 1 1 Allen 3 sub4 Brian 2 2 Alice 4 sub6 Bryce 4 3 Ayoung 5 sub5 Betty 5