Python Pandas - 合并/连接



Pandas 具有功能齐全、高性能的内存内连接操作,其用法与 SQL 等关系数据库非常相似。

Pandas 提供单个函数 `merge` 作为 DataFrame 对象之间所有标准数据库连接操作的入口点 -

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True)

这里,我们使用了以下参数:

  • **left** - 一个 DataFrame 对象。

  • **right** - 另一个 DataFrame 对象。

  • **on** - 要连接的列(名称)。必须同时出现在左、右 DataFrame 对象中。

  • **left_on** - 从左 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。

  • **right_on** - 从右 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。

  • **left_index** - 如果为 **True**,则使用左 DataFrame 的索引(行标签)作为其连接键。对于具有多级索引(分层)的 DataFrame,级别数必须与右 DataFrame 的连接键数匹配。

  • **right_index** - 与右 DataFrame 的 **left_index** 用法相同。

  • **how** - 'left'、'right'、'outer'、'inner' 之一。默认为 inner。每种方法的描述如下。

  • **sort** - 按字典序对结果 DataFrame 的连接键进行排序。默认为 True,设置为 False 将在许多情况下显著提高性能。

现在让我们创建两个不同的 DataFrame 并对其执行合并操作。

# import the pandas library
import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
   {'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print left
print right

其**输出**如下:

    Name  id   subject_id
0   Alex   1         sub1
1    Amy   2         sub2
2  Allen   3         sub4
3  Alice   4         sub6
4  Ayoung  5         sub5

    Name  id   subject_id
0  Billy   1         sub2
1  Brian   2         sub4
2  Bran    3         sub3
3  Bryce   4         sub6
4  Betty   5         sub5

根据键合并两个 DataFrame

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
	'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left,right,on='id')

其**输出**如下:

   Name_x   id  subject_id_x   Name_y   subject_id_y
0  Alex      1          sub1    Billy           sub2
1  Amy       2          sub2    Brian           sub4
2  Allen     3          sub4     Bran           sub3
3  Alice     4          sub6    Bryce           sub6
4  Ayoung    5          sub5    Betty           sub5

根据多个键合并两个 DataFrame

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
	'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left,right,on=['id','subject_id'])

其**输出**如下:

    Name_x   id   subject_id   Name_y
0    Alice    4         sub6    Bryce
1   Ayoung    5         sub5    Betty

使用 'how' 参数合并

`how` 参数用于指定如何确定结果表中包含哪些键。如果键组合不出现在左表或右表中,则连接表中的值将为 NA。

以下是 `how` 选项及其 SQL 等效名称的摘要:

合并方法 SQL 等效名称 描述
left LEFT OUTER JOIN 使用左对象的键
right RIGHT OUTER JOIN 使用右对象的键
outer FULL OUTER JOIN 使用键的并集
inner INNER JOIN 使用键的交集

左连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='left')

其**输出**如下:

    Name_x   id_x   subject_id   Name_y   id_y
0     Alex      1         sub1      NaN    NaN
1      Amy      2         sub2    Billy    1.0
2    Allen      3         sub4    Brian    2.0
3    Alice      4         sub6    Bryce    4.0
4   Ayoung      5         sub5    Betty    5.0

右连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='right')

其**输出**如下:

    Name_x  id_x   subject_id   Name_y   id_y
0      Amy   2.0         sub2    Billy      1
1    Allen   3.0         sub4    Brian      2
2    Alice   4.0         sub6    Bryce      4
3   Ayoung   5.0         sub5    Betty      5
4      NaN   NaN         sub3     Bran      3

外连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, how='outer', on='subject_id')

其**输出**如下:

    Name_x  id_x   subject_id   Name_y   id_y
0     Alex   1.0         sub1      NaN    NaN
1      Amy   2.0         sub2    Billy    1.0
2    Allen   3.0         sub4    Brian    2.0
3    Alice   4.0         sub6    Bryce    4.0
4   Ayoung   5.0         sub5    Betty    5.0
5      NaN   NaN         sub3     Bran    3.0

内连接

连接将在索引上执行。连接操作遵守其调用的对象。因此,`a.join(b)` 不等于 `b.join(a)`。

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='inner')

其**输出**如下:

    Name_x   id_x   subject_id   Name_y   id_y
0      Amy      2         sub2    Billy      1
1    Allen      3         sub4    Brian      2
2    Alice      4         sub6    Bryce      4
3   Ayoung      5         sub5    Betty      5
广告