- 机器学习基础
- ML - 首页
- ML - 简介
- ML - 入门
- ML - 基本概念
- ML - 生态系统
- ML - Python 库
- ML - 应用
- ML - 生命周期
- ML - 必备技能
- ML - 实现
- ML - 挑战与常见问题
- ML - 限制
- ML - 真实案例
- ML - 数据结构
- ML - 数学基础
- ML - 人工智能
- ML - 神经网络
- ML - 深度学习
- ML - 获取数据集
- ML - 分类数据
- ML - 数据加载
- ML - 数据理解
- ML - 数据准备
- ML - 模型
- ML - 监督学习
- ML - 无监督学习
- ML - 半监督学习
- ML - 强化学习
- ML - 监督学习 vs. 无监督学习
- 机器学习数据可视化
- ML - 数据可视化
- ML - 直方图
- ML - 密度图
- ML - 箱线图
- ML - 相关矩阵图
- ML - 散点矩阵图
- 机器学习统计学
- ML - 统计学
- ML - 均值、中位数、众数
- ML - 标准差
- ML - 百分位数
- ML - 数据分布
- ML - 偏度和峰度
- ML - 偏差和方差
- ML - 假设
- ML中的回归分析
- ML - 回归分析
- ML - 线性回归
- ML - 简单线性回归
- ML - 多元线性回归
- ML - 多项式回归
- ML中的分类算法
- ML - 分类算法
- ML - 逻辑回归
- ML - K近邻算法 (KNN)
- ML - 朴素贝叶斯算法
- ML - 决策树算法
- ML - 支持向量机
- ML - 随机森林
- ML - 混淆矩阵
- ML - 随机梯度下降
- ML中的聚类算法
- ML - 聚类算法
- ML - 基于中心点的聚类
- ML - K均值聚类
- ML - K中心点聚类
- ML - 均值漂移聚类
- ML - 层次聚类
- ML - 基于密度的聚类
- ML - DBSCAN聚类
- ML - OPTICS聚类
- ML - HDBSCAN聚类
- ML - BIRCH聚类
- ML - 亲和传播
- ML - 基于分布的聚类
- ML - 凝聚层次聚类
- ML中的降维
- ML - 降维
- ML - 特征选择
- ML - 特征提取
- ML - 向后消除法
- ML - 向前特征构造
- ML - 高相关性过滤器
- ML - 低方差过滤器
- ML - 缺失值比率
- ML - 主成分分析
- 强化学习
- ML - 强化学习算法
- ML - 利用与探索
- ML - Q学习
- ML - REINFORCE算法
- ML - SARSA强化学习
- ML - 演员-评论家方法
- 深度强化学习
- ML - 深度强化学习
- 量子机器学习
- ML - 量子机器学习
- ML - 使用Python的量子机器学习
- 机器学习杂项
- ML - 性能指标
- ML - 自动工作流程
- ML - 提升模型性能
- ML - 梯度提升
- ML - 自举汇聚 (Bagging)
- ML - 交叉验证
- ML - AUC-ROC曲线
- ML - 网格搜索
- ML - 数据缩放
- ML - 训练和测试
- ML - 关联规则
- ML - Apriori算法
- ML - 高斯判别分析
- ML - 成本函数
- ML - 贝叶斯定理
- ML - 精确率和召回率
- ML - 对抗性
- ML - 堆叠
- ML - 轮次
- ML - 感知器
- ML - 正则化
- ML - 过拟合
- ML - P值
- ML - 熵
- ML - MLOps
- ML - 数据泄露
- ML - 机器学习的货币化
- ML - 数据类型
- 机器学习 - 资源
- ML - 快速指南
- ML - 速查表
- ML - 面试问题
- ML - 有用资源
- ML - 讨论
机器学习 - 箱线图
箱线图是一种数据集的图形表示,它显示数据的五数概括——最小值、第一四分位数、中位数、第三四分位数和最大值。
箱线图由一个带有从箱子顶部和底部延伸出的须的箱子组成。
箱子表示数据的四分位数范围 (IQR),即第一四分位数和第三四分位数之间的范围。
须从箱子的顶部和底部延伸到IQR的1.5倍范围内的最高值和最低值。
任何超出此范围的值都被视为异常值,并以箱须之外的点表示。
Python中箱线图的实现
现在我们已经对箱线图有了基本的了解,让我们在Python中实现它们。在我们的示例中,我们将使用Sklearn中的Iris数据集,其中包含150朵鸢尾花的萼片长度、萼片宽度、花瓣长度和花瓣宽度的测量值,这些鸢尾花属于三个不同的物种——Setosa、Versicolor和Virginica。
首先,我们需要导入必要的库并加载数据集。
示例
import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import load_iris iris = load_iris() data = iris.data target = iris.target
接下来,我们可以使用Seaborn库为三个鸢尾花物种中的每一个创建一个萼片长度的箱线图。
plt.figure(figsize=(7.5, 3.5))
sns.boxplot(x=target, y=data[:, 0])
plt.xlabel('Species')
plt.ylabel('Sepal Length (cm)')
plt.show()
输出
此代码将生成三个鸢尾花物种中每个物种的萼片长度的箱线图,其中x轴表示物种,y轴表示以厘米为单位的萼片长度。
从这个箱线图中,我们可以看到setosa物种的萼片长度比versicolor和virginica物种短,而versicolor和virginica物种的萼片长度中位数和范围相似。此外,我们可以看到setosa物种中没有异常值,但versicolor和virginica物种中有一些异常值。
广告