- 机器学习基础
- ML - 首页
- ML - 简介
- ML - 入门
- ML - 基本概念
- ML - 生态系统
- ML - Python 库
- ML - 应用
- ML - 生命周期
- ML - 所需技能
- ML - 实现
- ML - 挑战与常见问题
- ML - 限制
- ML - 真实案例
- ML - 数据结构
- ML - 数学
- ML - 人工智能
- ML - 神经网络
- ML - 深度学习
- ML - 获取数据集
- ML - 分类数据
- ML - 数据加载
- ML - 数据理解
- ML - 数据准备
- ML - 模型
- ML - 监督学习
- ML - 无监督学习
- ML - 半监督学习
- ML - 强化学习
- ML - 监督学习与无监督学习
- 机器学习数据可视化
- ML - 数据可视化
- ML - 直方图
- ML - 密度图
- ML - 箱线图
- ML - 相关矩阵图
- ML - 散点矩阵图
- 机器学习统计学
- ML - 统计学
- ML - 均值、中位数、众数
- ML - 标准差
- ML - 百分位数
- ML - 数据分布
- ML - 偏度和峰度
- ML - 偏差和方差
- ML - 假设
- 机器学习中的回归分析
- ML - 回归分析
- ML - 线性回归
- ML - 简单线性回归
- ML - 多元线性回归
- ML - 多项式回归
- 机器学习中的分类算法
- ML - 分类算法
- ML - 逻辑回归
- ML - K近邻算法 (KNN)
- ML - 朴素贝叶斯算法
- ML - 决策树算法
- ML - 支持向量机
- ML - 随机森林
- ML - 混淆矩阵
- ML - 随机梯度下降
- 机器学习中的聚类算法
- ML - 聚类算法
- ML - 基于中心的聚类
- ML - K均值聚类
- ML - K中心点聚类
- ML - 均值漂移聚类
- ML - 层次聚类
- ML - 基于密度的聚类
- ML - DBSCAN聚类
- ML - OPTICS聚类
- ML - HDBSCAN聚类
- ML - BIRCH聚类
- ML - 亲和传播
- ML - 基于分布的聚类
- ML - 聚合聚类
- 机器学习中的降维
- ML - 降维
- ML - 特征选择
- ML - 特征提取
- ML - 向后剔除法
- ML - 向前特征构造
- ML - 高相关性过滤
- ML - 低方差过滤
- ML - 缺失值比率
- ML - 主成分分析
- 强化学习
- ML - 强化学习算法
- ML - 利用与探索
- ML - Q学习
- ML - REINFORCE算法
- ML - SARSA强化学习
- ML - 演员-评论家方法
- 深度强化学习
- ML - 深度强化学习
- 量子机器学习
- ML - 量子机器学习
- ML - 使用Python进行量子机器学习
- 机器学习杂项
- ML - 性能指标
- ML - 自动工作流
- ML - 提升模型性能
- ML - 梯度提升
- ML - 自举汇聚 (Bagging)
- ML - 交叉验证
- ML - AUC-ROC曲线
- ML - 网格搜索
- ML - 数据缩放
- ML - 训练和测试
- ML - 关联规则
- ML - Apriori算法
- ML - 高斯判别分析
- ML - 成本函数
- ML - 贝叶斯定理
- ML - 精确率和召回率
- ML - 对抗性
- ML - 堆叠
- ML - 时期
- ML - 感知器
- ML - 正则化
- ML - 过拟合
- ML - P值
- ML - 熵
- ML - MLOps
- ML - 数据泄露
- ML - 机器学习的盈利化
- ML - 数据类型
- 机器学习 - 资源
- ML - 快速指南
- ML - 速查表
- ML - 面试问题
- ML - 有用资源
- ML - 讨论
机器学习 - 网格搜索
网格搜索是一种机器学习中的超参数调整技术,它有助于为给定模型找到最佳的超参数组合。它的工作原理是定义一个超参数网格,然后使用所有可能的超参数组合训练模型,以找到性能最佳的组合。
换句话说,网格搜索是一种穷举搜索方法,其中定义了一组超参数,并在这些超参数的所有可能组合上执行搜索,以找到提供最佳性能的最佳值。
Python中的实现
在Python中,可以使用sklearn模块中的GridSearchCV类实现网格搜索。GridSearchCV类以模型、要调整的超参数和评分函数作为输入。然后,它对所有可能的超参数组合执行穷举搜索,并返回提供最佳分数的最佳超参数集。
以下是使用GridSearchCV类在Python中实现网格搜索的示例:
示例
from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification # Generate a sample dataset X, y = make_classification(n_samples=1000, n_features=10, n_classes=2) # Define the model and the hyperparameters to tune model = RandomForestClassifier() hyperparameters = {'n_estimators': [10, 50, 100], 'max_depth': [None, 5, 10]} # Define the Grid Search object and fit the data grid_search = GridSearchCV(model, hyperparameters, scoring='accuracy', cv=5) grid_search.fit(X, y) # Print the best hyperparameters and the corresponding score print("Best hyperparameters: ", grid_search.best_params_) print("Best score: ", grid_search.best_score_)
在此示例中,我们定义了一个RandomForestClassifier模型和一组要调整的超参数,即树的数量(n_estimators)和每棵树的最大深度(max_depth)。然后,我们创建一个GridSearchCV对象并使用fit()方法拟合数据。最后,我们打印最佳超参数集和相应的分数。
输出
执行此代码时,将产生以下输出:
Best hyperparameters: {'max_depth': None, 'n_estimators': 10} Best score: 0.953
广告