- 机器学习基础
- ML - 首页
- ML - 简介
- ML - 入门
- ML - 基本概念
- ML - 生态系统
- ML - Python 库
- ML - 应用
- ML - 生命周期
- ML - 所需技能
- ML - 实现
- ML - 挑战与常见问题
- ML - 限制
- ML - 真实案例
- ML - 数据结构
- ML - 数学
- ML - 人工智能
- ML - 神经网络
- ML - 深度学习
- ML - 获取数据集
- ML - 分类数据
- ML - 数据加载
- ML - 数据理解
- ML - 数据准备
- ML - 模型
- ML - 监督学习
- ML - 无监督学习
- ML - 半监督学习
- ML - 强化学习
- ML - 监督学习与无监督学习
- 机器学习数据可视化
- ML - 数据可视化
- ML - 直方图
- ML - 密度图
- ML - 箱线图
- ML - 相关矩阵图
- ML - 散点矩阵图
- 机器学习统计学
- ML - 统计学
- ML - 平均值、中位数、众数
- ML - 标准差
- ML - 百分位数
- ML - 数据分布
- ML - 偏度和峰度
- ML - 偏差和方差
- ML - 假设
- ML中的回归分析
- ML - 回归分析
- ML - 线性回归
- ML - 简单线性回归
- ML - 多元线性回归
- ML - 多项式回归
- ML中的分类算法
- ML - 分类算法
- ML - 逻辑回归
- ML - K近邻算法 (KNN)
- ML - 朴素贝叶斯算法
- ML - 决策树算法
- ML - 支持向量机
- ML - 随机森林
- ML - 混淆矩阵
- ML - 随机梯度下降
- ML中的聚类算法
- ML - 聚类算法
- ML - 基于中心点的聚类
- ML - K均值聚类
- ML - K中心点聚类
- ML - 均值漂移聚类
- ML - 层次聚类
- ML - 基于密度的聚类
- ML - DBSCAN聚类
- ML - OPTICS聚类
- ML - HDBSCAN聚类
- ML - BIRCH聚类
- ML - 亲和传播
- ML - 基于分布的聚类
- ML - 凝聚层次聚类
- ML中的降维
- ML - 降维
- ML - 特征选择
- ML - 特征提取
- ML - 后向消除法
- ML - 前向特征构造
- ML - 高相关性过滤器
- ML - 低方差过滤器
- ML - 缺失值比率
- ML - 主成分分析
- 强化学习
- ML - 强化学习算法
- ML - 利用与探索
- ML - Q学习
- ML - REINFORCE算法
- ML - SARSA强化学习
- ML - 演员-评论家方法
- 深度强化学习
- ML - 深度强化学习
- 量子机器学习
- ML - 量子机器学习
- ML - 使用Python的量子机器学习
- 机器学习杂项
- ML - 性能指标
- ML - 自动工作流
- ML - 提升模型性能
- ML - 梯度提升
- ML - 自举汇聚 (Bagging)
- ML - 交叉验证
- ML - AUC-ROC曲线
- ML - 网格搜索
- ML - 数据缩放
- ML - 训练和测试
- ML - 关联规则
- ML - Apriori算法
- ML - 高斯判别分析
- ML - 成本函数
- ML - 贝叶斯定理
- ML - 精度和召回率
- ML - 对抗性
- ML - 堆叠
- ML - 迭代
- ML - 感知器
- ML - 正则化
- ML - 过拟合
- ML - P值
- ML - 熵
- ML - MLOps
- ML - 数据泄露
- ML - 机器学习的盈利模式
- ML - 数据类型
- 机器学习 - 资源
- ML - 快速指南
- ML - 速查表
- ML - 面试问题
- ML - 有用资源
- ML - 讨论
机器学习 - 前向特征构造
前向特征构造是机器学习中的一种特征选择方法,我们从一个空的特征集开始,并在每一步迭代地添加性能最好的特征,直到达到所需的特征数量。
特征选择的目的是识别与预测目标变量相关的最重要的特征,同时忽略那些为模型增加噪声并可能导致过拟合的不太重要的特征。
前向特征构造涉及以下步骤:
初始化一个空的特征集。
设置要选择的最大特征数。
迭代直到达到所需的特征数:
对于每个尚未包含在已选择特征集中的剩余特征,使用已选择特征和当前特征拟合一个模型,并使用验证集评估其性能。
选择导致最佳性能的特征,并将其添加到已选择特征集中。
将已选择特征集作为模型的最佳特征集返回。
前向特征构造的主要优点是计算效率高,可用于高维数据集。但是,它可能并不总是产生最佳的特征集,尤其是在特征之间存在高度相关性或特征与目标变量之间存在非线性关系的情况下。
示例
以下是如何在 Python 中实现前向特征构造的示例:
# Importing the necessary libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # Load the diabetes dataset diabetes = pd.read_csv(r'C:\Users\Leekha\Desktop\diabetes.csv') # Define the predictor variables (X) and the target variable (y) X = diabetes.iloc[:, :-1].values y = diabetes.iloc[:, -1].values # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Create an empty set of features selected_features = set() # Set the maximum number of features to be selected max_features = 8 # Iterate until the desired number of features is reached while len(selected_features) < max_features: # Set the best feature and the best score to be 0 best_feature = None best_score = 0 # Iterate over all the remaining features for i in range(X_train.shape[1]): # Skip the feature if it's already selected if i in selected_features: continue # Select the current feature and fit a linear regression model X_train_selected = X_train[:, list(selected_features) + [i]] regressor = LinearRegression() regressor.fit(X_train_selected, y_train) # Compute the score on the testing set X_test_selected = X_test[:, list(selected_features) + [i]] score = regressor.score(X_test_selected, y_test) # Update the best feature and score if the current feature performs better if score > best_score: best_feature = i best_score = score # Add the best feature to the set of selected features selected_features.add(best_feature) # Print the selected features and the score print('Selected Features:', list(selected_features)) print('Score:', best_score)
输出
执行后,它将生成以下输出:
Selected Features: [1] Score: 0.23530716168783583 Selected Features: [0, 1] Score: 0.2923143573608237 Selected Features: [0, 1, 5] Score: 0.3164103491569179 Selected Features: [0, 1, 5, 6] Score: 0.3287368302427327 Selected Features: [0, 1, 2, 5, 6] Score: 0.334586804842275 Selected Features: [0, 1, 2, 3, 5, 6] Score: 0.3356264736550455 Selected Features: [0, 1, 2, 3, 4, 5, 6] Score: 0.3313166516703744 Selected Features: [0, 1, 2, 3, 4, 5, 6, 7] Score: 0.32230203252064216
广告