- 机器学习基础
- ML - 首页
- ML - 简介
- ML - 入门
- ML - 基本概念
- ML - 生态系统
- ML - Python 库
- ML - 应用
- ML - 生命周期
- ML - 所需技能
- ML - 实现
- ML - 挑战与常见问题
- ML - 限制
- ML - 真实案例
- ML - 数据结构
- ML - 数学基础
- ML - 人工智能
- ML - 神经网络
- ML - 深度学习
- ML - 获取数据集
- ML - 类别数据
- ML - 数据加载
- ML - 数据理解
- ML - 数据准备
- ML - 模型
- ML - 监督学习
- ML - 无监督学习
- ML - 半监督学习
- ML - 强化学习
- ML - 监督学习 vs. 无监督学习
- 机器学习数据可视化
- ML - 数据可视化
- ML - 直方图
- ML - 密度图
- ML - 箱线图
- ML - 相关矩阵图
- ML - 散点矩阵图
- 机器学习统计学
- ML - 统计学
- ML - 均值、中位数、众数
- ML - 标准差
- ML - 百分位数
- ML - 数据分布
- ML - 偏度和峰度
- ML - 偏差和方差
- ML - 假设
- 机器学习中的回归分析
- ML - 回归分析
- ML - 线性回归
- ML - 简单线性回归
- ML - 多元线性回归
- ML - 多项式回归
- 机器学习中的分类算法
- ML - 分类算法
- ML - 逻辑回归
- ML - K近邻算法 (KNN)
- ML - 朴素贝叶斯算法
- ML - 决策树算法
- ML - 支持向量机
- ML - 随机森林
- ML - 混淆矩阵
- ML - 随机梯度下降
- 机器学习中的聚类算法
- ML - 聚类算法
- ML - 基于质心的聚类
- ML - K均值聚类
- ML - K中心点聚类
- ML - 均值漂移聚类
- ML - 层次聚类
- ML - 基于密度的聚类
- ML - DBSCAN 聚类
- ML - OPTICS 聚类
- ML - HDBSCAN 聚类
- ML - BIRCH 聚类
- ML - 亲和传播
- ML - 基于分布的聚类
- ML - 聚合聚类
- 机器学习中的降维
- ML - 降维
- ML - 特征选择
- ML - 特征提取
- ML - 向后消除法
- ML - 前向特征构造
- ML - 高相关性过滤器
- ML - 低方差过滤器
- ML - 缺失值比率
- ML - 主成分分析
- 强化学习
- ML - 强化学习算法
- ML - 利用与探索
- ML - Q学习
- ML - REINFORCE 算法
- ML - SARSA 强化学习
- ML - 演员-评论家方法
- 深度强化学习
- ML - 深度强化学习
- 量子机器学习
- ML - 量子机器学习
- ML - 使用 Python 的量子机器学习
- 机器学习杂项
- ML - 性能指标
- ML - 自动工作流程
- ML - 提升模型性能
- ML - 梯度提升
- ML - 自举汇聚 (Bagging)
- ML - 交叉验证
- ML - AUC-ROC 曲线
- ML - 网格搜索
- ML - 数据缩放
- ML - 训练和测试
- ML - 关联规则
- ML - Apriori 算法
- ML - 高斯判别分析
- ML - 成本函数
- ML - 贝叶斯定理
- ML - 精度和召回率
- ML - 对抗性
- ML - 堆叠
- ML - 轮次
- ML - 感知器
- ML - 正则化
- ML - 过拟合
- ML - P值
- ML - 熵
- ML - MLOps
- ML - 数据泄露
- ML - 机器学习的货币化
- ML - 数据类型
- 机器学习 - 资源
- ML - 快速指南
- ML - 速查表
- ML - 面试问题
- ML - 有用资源
- ML - 讨论
机器学习 - 基于质心的聚类
基于质心的聚类是一类机器学习算法,其目标是根据数据点到每个聚类质心的接近程度将数据集划分为组或聚类。
聚类的质心是该聚类中所有数据点的算术平均值,并作为该聚类的代表点。
两种最流行的基于质心的聚类算法是:
K均值聚类
K均值聚类是一种流行的用于数据聚类的无监督机器学习算法。它是一种简单高效的算法,可以根据数据的相似性将数据点分组到K个聚类中。该算法首先随机选择K个质心,它们是每个聚类的初始中心。然后,每个数据点都被分配到其质心与其最接近的聚类。然后通过取聚类中所有数据点的平均值来更新质心。重复此过程,直到质心不再移动或达到最大迭代次数。
K中心点聚类
K中心点聚类是一种基于划分的聚类算法,用于将一组数据点聚类到“k”个聚类中。与使用数据点的平均值来表示聚类中心的K均值聚类不同,K中心点聚类使用一个代表性数据点(称为中心点)来表示聚类中心。中心点是使它与聚类中所有其他数据点之间的距离之和最小化的数据点。这使得K中心点聚类比K均值聚类更能抵抗异常值和噪声。
我们将在接下来的两章中讨论这两种聚类方法。
广告