- 基本系统特性
- DSP - 静态系统
- DSP - 动态系统
- DSP - 因果系统
- DSP - 非因果系统
- DSP - 反因果系统
- DSP - 线性系统
- DSP - 非线性系统
- DSP - 时不变系统
- DSP - 时变系统
- DSP - 稳定系统
- DSP - 不稳定系统
- DSP - 例题解析
- 快速傅里叶变换
- DSP - 快速傅里叶变换
- DSP - 原地计算
- DSP - 计算机辅助设计
- 数字信号处理资源
- DSP - 快速指南
- DSP - 有用资源
- DSP - 讨论
DSP - DFT例题解析
例题1
验证序列$x(n) = \frac{1^n}{4}u(n)$的Parseval定理
解 − $\displaystyle\sum\limits_{-\infty}^\infty|x_1(n)|^2 = \frac{1}{2\pi}\int_{-\pi}^{\pi}|X_1(e^{j\omega})|^2d\omega$
左边 $\displaystyle\sum\limits_{-\infty}^\infty|x_1(n)|^2$
$= \displaystyle\sum\limits_{-\infty}^{\infty}x(n)x^*(n)$
$= \displaystyle\sum\limits_{-\infty}^\infty(\frac{1}{4})^{2n}u(n) = \frac{1}{1-\frac{1}{16}} = \frac{16}{15}$
右边 $X(e^{j\omega}) = \frac{1}{1-\frac{1}{4}e^{-j\omega}} = \frac{1}{1-0.25\cos \omega+j0.25\sin \omega}$
$\Longleftrightarrow X^*(e^{j\omega}) = \frac{1}{1-0.25\cos \omega-j0.25\sin \omega}$
计算 $X(e^{j\omega}).X^*(e^{j\omega})$
$= \frac{1}{(1-0.25\cos \omega)^2+(0.25\sin \omega)^2} = \frac{1}{1.0625-0.5\cos \omega}$
$\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1}{1.0625-0.5\cos \omega}d\omega$
$\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1}{1.0625-0.5\cos \omega}d\omega = 16/15$
我们可以看到,左边 = 右边。(证毕)
例题2
计算$x(n) = 3\delta (n)$的N点DFT
解 − 我们知道,
$X(K) = \displaystyle\sum\limits_{n = 0}^{N-1}x(n)e^{\frac{j2\Pi kn}{N}}$
$= \displaystyle\sum\limits_{n = 0}^{N-1}3\delta(n)e^{\frac{j2\Pi kn}{N}}$
$ = 3\delta (0)\times e^0 = 3$
所以$x(k) = 3,0\leq k\leq N-1$… 答案
例题3
计算$x(n) = 7\delta(n-n_0)$的N点DFT
解 − 我们知道,
$X(K) = \displaystyle\sum\limits_{n = 0}^{N-1}x(n)e^{\frac{j2\Pi kn}{N}}$
代入x(n)的值,
$\displaystyle\sum\limits_{n = 0}^{N-1}7\delta (n-n_0)e^{-\frac{j2\Pi kn}{N}}$
$= 7e^{-j2\pi kn_0/N}$… 答案