- 数据结构与算法
- DSA - 首页
- DSA - 概述
- DSA - 环境搭建
- DSA - 算法基础
- DSA - 渐近分析
- 数据结构
- DSA - 数据结构基础
- DSA - 数据结构和类型
- DSA - 数组数据结构
- 链表
- DSA - 链表数据结构
- DSA - 双向链表数据结构
- DSA - 循环链表数据结构
- 栈与队列
- DSA - 栈数据结构
- DSA - 表达式解析
- DSA - 队列数据结构
- 搜索算法
- DSA - 搜索算法
- DSA - 线性搜索算法
- DSA - 二分搜索算法
- DSA - 插值搜索
- DSA - 跳跃搜索算法
- DSA - 指数搜索
- DSA - 斐波那契搜索
- DSA - 子列表搜索
- DSA - 哈希表
- 排序算法
- DSA - 排序算法
- DSA - 冒泡排序算法
- DSA - 插入排序算法
- DSA - 选择排序算法
- DSA - 归并排序算法
- DSA - 希尔排序算法
- DSA - 堆排序
- DSA - 桶排序算法
- DSA - 计数排序算法
- DSA - 基数排序算法
- DSA - 快速排序算法
- 图数据结构
- DSA - 图数据结构
- DSA - 深度优先遍历
- DSA - 广度优先遍历
- DSA - 生成树
- 树数据结构
- DSA - 树数据结构
- DSA - 树遍历
- DSA - 二叉搜索树
- DSA - AVL树
- DSA - 红黑树
- DSA - B树
- DSA - B+树
- DSA - 伸展树
- DSA - 字典树
- DSA - 堆数据结构
- 递归
- DSA - 递归算法
- DSA - 使用递归实现汉诺塔
- DSA - 使用递归实现斐波那契数列
- 分治法
- DSA - 分治法
- DSA - 最大最小问题
- DSA - Strassen矩阵乘法
- DSA - Karatsuba算法
- 贪心算法
- DSA - 贪心算法
- DSA - 旅行商问题(贪心法)
- DSA - Prim最小生成树
- DSA - Kruskal最小生成树
- DSA - Dijkstra最短路径算法
- DSA - 地图着色算法
- DSA - 分数背包问题
- DSA - 带截止日期的作业排序
- DSA - 最优合并模式算法
- 动态规划
- DSA - 动态规划
- DSA - 矩阵链乘法
- DSA - Floyd-Warshall算法
- DSA - 0-1背包问题
- DSA - 最长公共子序列算法
- DSA - 旅行商问题(动态规划法)
- 近似算法
- DSA - 近似算法
- DSA - 顶点覆盖算法
- DSA - 集合覆盖问题
- DSA - 旅行商问题(近似算法)
- 随机化算法
- DSA - 随机化算法
- DSA - 随机化快速排序算法
- DSA - Karger最小割算法
- DSA - Fisher-Yates洗牌算法
- DSA有用资源
- DSA - 问答
- DSA - 快速指南
- DSA - 有用资源
- DSA - 讨论
二叉搜索树
二叉搜索树 (BST) 是一种树,其中所有节点都遵循以下属性:
节点的左子树中的键小于或等于其父节点的键。
节点的右子树中的键大于或等于其父节点的键。
因此,BST 将其所有子树划分为两个部分:左子树和右子树,可以定义为:
left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)
二叉树表示
BST 是以保持 BST 属性的方式排列的节点的集合。每个节点都有一个键和一个关联的值。在搜索时,将所需的键与 BST 中的键进行比较,如果找到,则检索关联的值。
以下是 BST 的图形表示:
我们观察到根节点键 (27) 的左子树包含所有值较小的键,右子树包含所有值较大的键。
基本操作
以下是二叉搜索树的基本操作:
搜索 - 在树中搜索元素。
插入 - 在树中插入元素。
前序遍历 - 以预序方式遍历树。
中序遍历 - 以中序方式遍历树。
后序遍历 - 以后序方式遍历树。
定义节点
定义一个节点,它存储一些数据以及对其左右子节点的引用。
struct node { int data; struct node *leftChild; struct node *rightChild; };
搜索操作
每当要搜索元素时,从根节点开始搜索。如果数据小于键值,则在左子树中搜索元素。否则,在右子树中搜索元素。对每个节点遵循相同的算法。
算法
1. START 2. Check whether the tree is empty or not 3. If the tree is empty, search is not possible 4. Otherwise, first search the root of the tree. 5. If the key does not match with the value in the root, search its subtrees. 6. If the value of the key is less than the root value, search the left subtree 7. If the value of the key is greater than the root value, search the right subtree. 8. If the key is not found in the tree, return unsuccessful search. 9. END
示例
以下是此操作在各种编程语言中的实现:
#include <stdio.h> #include <stdlib.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; while(current->data != data) { //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } return current; } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done"); printf("\nBST: \n"); printTree(root); struct node* k; int ele = 35; printf("\nElement to be searched: %d", ele); k = search(35); if(k != NULL) printf("\nElement %d found", k->data); else printf("\nElement not found"); return 0; }
输出
Insertion done BST: --15 --20 --35 --50 --55 --65 --90 Element to be searched: 35 Element 35 found
#include <iostream> using namespace std; struct Node { int data; struct Node *leftChild, *rightChild; }; Node *root = NULL; Node *newNode(int item){ Node *temp = (Node *)malloc(sizeof(Node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ Node *tempNode = (Node*) malloc(sizeof(Node)); Node *current; Node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } Node* search(int data){ Node *current = root; while(current->data != data) { //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } return current; } void printTree(Node* Node) { if (Node == nullptr) return; printTree(Node->leftChild); cout << " --" << Node->data; printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); cout<<"Insertion done"; cout<<"\nBST: "<<endl; printTree(root); struct node* k; int ele = 35; cout<<"\nElement to be searched: "<<ele; Node* result = search(35); if(k != NULL) cout<<"\nElement "<<result->data<<" found "; else cout<<"\nElement not found"; return 0; }
输出
Insertion done BST: --15 --20 --35 --50 --55 --65 --90 Element to be searched: 35 Element 35 found
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; public BSTNode(int n) { left = null; right = null; data = n; } } public class BST { static BSTNode root; public BST() { root = null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } private boolean search(BSTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.data; if(val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.print(prefix + "--" + node.data + " "); printTree(node.right , prefix); } public static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); System.out.print("Insertion Done"); System.out.print("\nBST:\n"); bst.printTree(root, ""); int ele = 80; System.out.print("\nElement to be searched: " + ele); System.out.println("\nElement found: " + bst.search(root, 80)); } }
输出
Insertion Done BST: --15 --20 --35 --50 --55 --65 --80 --90 Element to be searched: 80 Element found: true
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # search method to compare the value with nodes def search(self, key): if key < self.data: if self.left is None: return str(key)+" Not Found" return self.left.search(key) elif key > self.data: if self.right is None: return str(key)+" Not Found" return self.right.search(key) else: print(str(self.data) + ' is found') root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print(root.search(17)) print(root.search(12))
输出
17 Not Found 12 is found None
插入操作
每当要插入元素时,首先找到其正确位置。从根节点开始搜索,如果数据小于键值,则在左子树中搜索空位置并插入数据。否则,在右子树中搜索空位置并插入数据。
算法
1. START 2. If the tree is empty, insert the first element as the root node of the tree. The following elements are added as the leaf nodes. 3. If an element is less than the root value, it is added into the left subtree as a leaf node. 4. If an element is greater than the root value, it is added into the right subtree as a leaf node. 5. The final leaf nodes of the tree point to NULL values as their child nodes. 6. END
示例
以下是此操作在各种编程语言中的实现:
#include <stdio.h> #include <stdlib.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done\n"); printf("BST: \n"); printTree(root); return 0; }
输出
Insertion done BST: --15 --20 --35 --50 --55 --65 --90
#include <iostream> using namespace std; struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); cout<<" --"<<Node->data; printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); cout<<"Insertion done\n"; cout<<"BST:"<<endl; printTree(root); return 0; }
输出
Insertion done BST: --15 --20 --35 --50 --55 --65 --90
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; public BSTNode(int n) { left = null; right = null; data = n; } } public class BST { static BSTNode root; public BST() { root = null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.print(prefix + "--" + node.data); printTree(node.right , prefix + " "); } public static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); System.out.print("Insertion done\n"); System.out.print("BST:\n"); bst.printTree(root, " "); } }
输出
Insertion done BST: --15 --20 --35 --50 --55 --65 --80 --90
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def printTree(self, prefex): if self is None: return self.left.printTree(prefex + "") if self.left else None print(prefex + "--", str(self.data),"", end = "") self.right.printTree(prefex + "") if self.right else None root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Insertion Done") print("BST: ") root.printTree('')
输出
Insertion Done BST: -- 5 -- 12 -- 23 -- 34 -- 46 -- 54
中序遍历
二叉搜索树中的中序遍历操作按以下顺序访问其所有节点:
首先,遍历根节点/当前节点的左子节点(如果有)。
接下来,遍历当前节点。
最后,遍历当前节点的右子节点(如果有)。
算法
1. START 2. Traverse the left subtree, recursively 3. Then, traverse the root node 4. Traverse the right subtree, recursively. 5. END
示例
以下是此操作在各种编程语言中的实现:
#include <stdio.h> #include <stdlib.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->left); printf("%d -> ", root->key); inorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Inorder traversal: "); inorder(root); }
输出
Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->left); printf("%d -> ", root->key); inorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Inorder traversal: "); inorder(root); }
输出
Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
class Node { int data; Node leftChild; Node rightChild; public Node(int key) { data = key; leftChild = rightChild = null; } } public class TreeDataStructure { Node root = null; void inorder_traversal(Node node) { if(node != null) { inorder_traversal(node.leftChild); System.out.print(node.data + " ->"); inorder_traversal(node.rightChild); } } public static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println("Inorder traversal: "); tree.inorder_traversal(tree.root); } }
输出
Inorder traversal: 4 ->12 ->17 ->27 ->56 ->30 ->
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Inorder(self): if self.left: self.left.Inorder() print(self.data, "->", end = " ") if self.right: self.right.Inorder() root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Inorder Traversal: ") root.Inorder()
输出
Inorder Traversal: 12 -> 34 -> 54 ->
前序遍历
前序遍历操作访问二叉搜索树中的所有节点。但是,首先打印根节点,然后是其左子树,最后是其右子树。
算法
1. START 2. Traverse the root node first. 3. Then traverse the left subtree, recursively 4. Later, traverse the right subtree, recursively. 5. END
示例
以下是此操作在各种编程语言中的实现:
#include <stdio.h> #include <stdlib.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); preorder(root->left); preorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Preorder traversal: "); preorder(root); }
输出
Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); preorder(root->left); preorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Preorder traversal: "); preorder(root); }
输出
Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node { int data; Node leftChild; Node rightChild; public Node(int key) { data = key; leftChild = rightChild = null; } } public class TreeDataStructure { Node root = null; void preorder_traversal(Node node) { if(node != null) { System.out.print(node.data + " ->"); preorder_traversal(node.leftChild); preorder_traversal(node.rightChild); } } public static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println("Preorder traversal: "); tree.preorder_traversal(tree.root); } }
输出
Preorder traversal: 27 ->12 ->4 ->17 ->30 ->56 ->
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Preorder(self): print(self.data, "->", end = "") if self.left: self.left.Preorder() if self.right: self.right.Preorder() root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Preorder Traversal: ") root.Preorder()
输出
Preorder Traversal: 54 ->34 ->12 ->5 ->23 ->46 ->
后序遍历
与其他遍历一样,后序遍历也访问二叉搜索树中的所有节点并显示它们。但是,首先打印左子树,然后是右子树,最后是根节点。
算法
1. START 2. Traverse the left subtree, recursively 3. Traverse the right subtree, recursively. 4. Then, traverse the root node 5. END
示例
以下是此操作在各种编程语言中的实现:
#include <stdio.h> #include <stdlib.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); postorder(root->left); postorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Postorder traversal: "); postorder(root); }
输出
Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 > 65 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); postorder(root->left); postorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Postorder traversal: "); postorder(root); }
输出
Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node { int data; Node leftChild; Node rightChild; public Node(int key) { data = key; leftChild = rightChild = null; } } public class TreeDataStructure { Node root = null; void postorder_traversal(Node node) { if(node != null) { postorder_traversal(node.leftChild); postorder_traversal(node.rightChild); System.out.print(node.data + " ->"); } } public static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println("Postorder traversal: "); tree.postorder_traversal(tree.root); } }
输出
Postorder traversal: 4 ->17 ->12 ->56 ->30 ->27 ->
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Postorder(self): if self.left: self.left.Postorder() if self.right: self.right.Postorder() print(self.data, "->", end = "") root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Postorder Traversal: ") root.Postorder()
输出
Postorder Traversal: 5 ->23 ->12 ->46 ->34 ->54 ->
完整实现
以下是二叉搜索树在各种编程语言中的完整实现:
#include <stdio.h> #include <stdlib.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; while(current->data != data) { if(current != NULL) { //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } } return current; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->leftChild); printf("%d -> ", root->data); inorder(root->rightChild); } } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); preorder(root->leftChild); preorder(root->rightChild); } } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); postorder(root->leftChild); postorder(root->rightChild); } } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done"); printf("\nPreorder Traversal: "); preorder(root); printf("\nInorder Traversal: "); inorder(root); printf("\nPostorder Traversal: "); postorder(root); struct node* k; int ele = 35; printf("\nElement to be searched: %d", ele); k = search(35); if(k != NULL) printf("\nElement %d found", k->data); else printf("\nElement not found"); return 0; }
输出
Insertion done Preorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Inorder Traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 -> Postorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Element to be searched: 35 Element 35 found
#include <iostream> using namespace std; struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; while(current->data != data) { //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } return current; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->leftChild); cout<<root->data<<" ->"; inorder(root->rightChild); } } // Preorder Traversala void preorder(struct node *root){ if (root != NULL) { cout<<root->data<<" ->"; preorder(root->leftChild); preorder(root->rightChild); } } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { cout<<" -> "<<root->data; postorder(root->leftChild); postorder(root->rightChild); } } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); cout<<"Insertion done "; cout<<"\nPreorder Traversal: "; preorder(root); cout<<"\nInorder Traversal: "; inorder(root); cout<<"\nPostorder Traversal: "; postorder(root); struct node* k; int ele = 35; cout<<"\nElement tonbe searched: "<<ele; k = search(35); if(k != NULL) cout<<"\nElement "<<k->data<<" found"; else cout<<"\nElement not found"; return 0; }
输出
Insertion done Preorder Traversal: 55 ->20 ->15 ->50 ->35 ->90 ->65 -> Inorder Traversal: 15 ->20 ->35 ->50 ->55 ->65 ->90 -> Postorder Traversal: -> 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 Element tonbe searched: 35 Element 35 found
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; public BSTNode(int n) { left = null; right = null; data = n; } } public class BST { static BSTNode root; public BST() { root = null; } public boolean isEmpty() { return root == null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } public void delete(int k) { if(isEmpty ()) System.out.println("TREE EMPTY"); else if(search (k) == false) System.out.println("SORRY " + k + " IS NOT PRESENT"); else { root=delete(root,k); System.out.println(k + " DELETED FROM THE TREE"); } } public BSTNode delete(BSTNode root, int k) { BSTNode p, p2, n; if(root.data == k) { BSTNode lt, rt; lt = root.left; rt = root.right; if(lt == null && rt == null) { return null; } else if(lt == null) { p = rt; return p; } else if(rt == null) { p = lt; return p; } else { p2 = rt; p = rt; while(p.left != null) p = p.left; p.left = lt; return p2; } } if (k < root.data) { n = delete(root.left, k); root.left = n; } else { n = delete(root.right, k); root.right = n; } return root; } public boolean search(int val) { return search(root, val); } private boolean search(BSTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.data; if(val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.println(prefix + "--" + node.data); printTree(node.right , prefix + " "); } public static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); bst.printTree(root, " "); bst.delete(55); System.out.println("Element found = " + bst.search(80)); System.out.println("Is Tree Empty? " + bst.isEmpty()); } }
输出
--15 --20--35 --50 --55 --65 --80 --90 55 DELETED FROM THE TREE Element found = true Is Tree Empty? false
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # search method to compare the value with nodes def search(self, key): if key < self.data: if self.left is None: return str(key)+ " Not Found" return self.left.search(key) elif key > self.data: if self.right is None: return str(key)+" Not Found" return self.right.search(key) else: print(str(self.data) + ' is found') # Print the tree def Inorder(self): if self.left: self.left.Inorder() print(self.data , " ->", end = " ") if self.right: self.right.Inorder() # Print the tree def Preorder(self): print(self.data, " ->", end = " ") if self.left: self.left.Preorder() if self.right: self.right.Preorder() # Print the tree def Postorder(self): if self.left: self.left.Postorder() if self.right: self.right.Postorder() print(self.data, " ->", end = " ") root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Insertion Done") print("Preorder Traversal: ") root.Preorder() print("\nInorder Traversal: ") root.Inorder() print("\nPostorder Traversal: ") root.Postorder() ele = 17 print("\nElement to be searched: ", ele) print(root.search(ele))输出
Insertion Done Preorder Traversal: 54 -> 34 -> 12 -> 5 -> 23 -> 46 -> Inorder Traversal: 5 -> 12 -> 23 -> 34 -> 46 -> 54 -> Postorder Traversal: 5 -> 23 -> 12 -> 46 -> 34 -> 54 -> Element to be searched: 17 17 Not Found