- 数据结构与算法
- DSA - 首页
- DSA - 概述
- DSA - 环境设置
- DSA - 算法基础
- DSA - 渐近分析
- 数据结构
- DSA - 数据结构基础
- DSA - 数据结构和类型
- DSA - 数组数据结构
- 链表
- DSA - 链表数据结构
- DSA - 双向链表数据结构
- DSA - 循环链表数据结构
- 栈与队列
- DSA - 栈数据结构
- DSA - 表达式解析
- DSA - 队列数据结构
- 搜索算法
- DSA - 搜索算法
- DSA - 线性搜索算法
- DSA - 二分搜索算法
- DSA - 插值搜索
- DSA - 跳跃搜索算法
- DSA - 指数搜索
- DSA - 斐波那契搜索
- DSA - 子列表搜索
- DSA - 哈希表
- 排序算法
- DSA - 排序算法
- DSA - 冒泡排序算法
- DSA - 插入排序算法
- DSA - 选择排序算法
- DSA - 归并排序算法
- DSA - 希尔排序算法
- DSA - 堆排序
- DSA - 桶排序算法
- DSA - 计数排序算法
- DSA - 基数排序算法
- DSA - 快速排序算法
- 图数据结构
- DSA - 图数据结构
- DSA - 深度优先遍历
- DSA - 广度优先遍历
- DSA - 生成树
- 树数据结构
- DSA - 树数据结构
- DSA - 树的遍历
- DSA - 二叉搜索树
- DSA - AVL树
- DSA - 红黑树
- DSA - B树
- DSA - B+树
- DSA - 伸展树
- DSA - 字典树
- DSA - 堆数据结构
- 递归
- DSA - 递归算法
- DSA - 使用递归的汉诺塔
- DSA - 使用递归的斐波那契数列
- 分治法
- DSA - 分治法
- DSA - 最大最小问题
- DSA - Strassen矩阵乘法
- DSA - Karatsuba算法
- 贪心算法
- DSA - 贪心算法
- DSA - 旅行商问题(贪心算法)
- DSA - Prim最小生成树
- DSA - Kruskal最小生成树
- DSA - Dijkstra最短路径算法
- DSA - 地图着色算法
- DSA - 分数背包问题
- DSA - 带截止日期的作业排序
- DSA - 最佳合并模式算法
- 动态规划
- DSA - 动态规划
- DSA - 矩阵链乘法
- DSA - Floyd-Warshall算法
- DSA - 0-1背包问题
- DSA - 最长公共子序列算法
- DSA - 旅行商问题(动态规划)
- 近似算法
- DSA - 近似算法
- DSA - 顶点覆盖算法
- DSA - 集合覆盖问题
- DSA - 旅行商问题(近似算法)
- 随机算法
- DSA - 随机算法
- DSA - 随机快速排序算法
- DSA - Karger最小割算法
- DSA - Fisher-Yates洗牌算法
- DSA有用资源
- DSA - 问答
- DSA - 快速指南
- DSA - 有用资源
- DSA - 讨论
基数排序算法
基数排序是一种逐步排序算法,它从输入元素的最低有效位开始排序。与计数排序和桶排序一样,基数排序也假设输入元素有一些特性,即它们都是k位数。
排序从每个元素的最低有效位开始。这些最低有效位都被视为单个元素并首先排序;然后是次低有效位。这个过程持续进行,直到输入元素的所有位都被排序。
注意 − 如果元素的位数不相等,则找到输入元素中位数的最大值,并在位数较少的元素前面添加前导零。这不会改变元素的值,但仍然使它们成为k位数。
基数排序算法
基数排序算法在每个阶段排序时都使用计数排序算法。详细步骤如下:
步骤1 − 检查所有输入元素的位数是否相同。如果不相同,检查列表中位数最多的数字,并在位数较少的数字前面添加前导零。
步骤2 − 获取每个元素的最低有效位。
步骤3 − 使用计数排序逻辑对这些位进行排序,并根据获得的输出更改元素的顺序。例如,如果输入元素是十进制数,则每个位可以取的值为0-9,因此根据这些值对位进行索引。
步骤4 − 对下一个最低有效位重复步骤2,直到元素中的所有位都被排序。
步骤5 − 第k次循环后获得的最终元素列表是排序后的输出。
伪代码
Algorithm: RadixSort(a[], n): // Find the maximum element of the list max = a[0] for (i=1 to n-1): if (a[i]>max): max=a[i] // applying counting sort for each digit in each number of //the input list For (pos=1 to max/pos>0): countSort(a, n, pos) pos=pos*10
调用的countSort算法为:
Algorithm: countSort(a, n, pos) Initialize count[0…9] with zeroes for i = 0 to n: count[(a[i]/pos) % 10]++ for i = 1 to 10: count[i] = count[i] + count[i-1] for i = n-1 to 0: output[count[(a[i]/pos) % 10]-1] = a[i] i-- for i to n: a[i] = output[i]
分析
假设输入元素中有k位,则基数排序算法的运行时间为Θ(k(n + b))。这里,n是输入列表中的元素个数,b是数字每一位可能取值的个数。
示例
对于给定的无序元素列表 236, 143, 26, 42, 1, 99, 765, 482, 3, 56,我们需要执行基数排序并获得排序后的输出列表:
步骤1
检查位数最多的元素,为3位。因此,我们为位数少于3位的数字添加前导零。我们得到的列表为:
236, 143, 026, 042, 001, 099, 765, 482, 003, 056
步骤2
构建一个表来根据其索引存储值。由于给定的输入是十进制数,因此基于这些数字的可能值(即0-9)进行索引。
步骤3
根据所有数字的最低有效位,将数字放在各自的索引上。
此步骤排序后的元素为 001, 042, 482, 143, 003, 765, 236, 026, 056, 099。
步骤4
此步骤的输入顺序为上一步输出的顺序。现在,我们使用次低有效位进行排序。
获得的输出顺序为 001, 003, 026, 236, 042, 143, 056, 765, 482, 099。
步骤5
上一步后的输入列表重新排列为:
001, 003, 026, 236, 042, 143, 056, 765, 482, 099
现在,我们需要对输入元素的最后一位进行排序。
由于输入元素中没有其他位,因此此步骤中获得的输出被视为最终输出。
最终排序后的输出为:
1, 3, 26, 42, 56, 99, 143, 236, 482, 765
实现
计数排序算法协助基数排序对多个d位数字进行迭代排序,循环次数为'd'。本教程中基数排序已使用四种编程语言实现:C、C++、Java、Python。
#include <stdio.h> void countsort(int a[], int n, int pos){ int output[n + 1]; int max = (a[0] / pos) % 10; for (int i = 1; i < n; i++) { if (((a[i] / pos) % 10) > max) max = a[i]; } int count[max + 1]; for (int i = 0; i < max; ++i) count[i] = 0; for (int i = 0; i < n; i++) count[(a[i] / pos) % 10]++; for (int i = 1; i < 10; i++) count[i] += count[i - 1]; for (int i = n - 1; i >= 0; i--) { output[count[(a[i] / pos) % 10] - 1] = a[i]; count[(a[i] / pos) % 10]--; } for (int i = 0; i < n; i++) a[i] = output[i]; } void radixsort(int a[], int n){ int max = a[0]; for (int i = 1; i < n; i++) if (a[i] > max) max = a[i]; for (int pos = 1; max / pos > 0; pos *= 10) countsort(a, n, pos); } int main(){ int a[] = {236, 15, 333, 27, 9, 108, 76, 498}; int n = sizeof(a) / sizeof(a[0]); printf("Before sorting array elements are: "); for (int i = 0; i <n; ++i) { printf("%d ", a[i]); } radixsort(a, n); printf("\nAfter sorting array elements are: "); for (int i = 0; i < n; ++i) { printf("%d ", a[i]); } printf("\n"); }
输出
Before sorting array elements are: 236 15 333 27 9 108 76 498 After sorting array elements are: 9 15 27 76 108 236 333 498
#include <iostream> using namespace std; void countsort(int a[], int n, int pos){ int output[n + 1]; int max = (a[0] / pos) % 10; for (int i = 1; i < n; i++) { if (((a[i] / pos) % 10) > max) max = a[i]; } int count[max + 1]; for (int i = 0; i < max; ++i) count[i] = 0; for (int i = 0; i < n; i++) count[(a[i] / pos) % 10]++; for (int i = 1; i < 10; i++) count[i] += count[i - 1]; for (int i = n - 1; i >= 0; i--) { output[count[(a[i] / pos) % 10] - 1] = a[i]; count[(a[i] / pos) % 10]--; } for (int i = 0; i < n; i++) a[i] = output[i]; } void radixsort(int a[], int n){ int max = a[0]; for (int i = 1; i < n; i++) if (a[i] > max) max = a[i]; for (int pos = 1; max / pos > 0; pos *= 10) countsort(a, n, pos); } int main(){ int a[] = {236, 15, 333, 27, 9, 108, 76, 498}; int n = sizeof(a) / sizeof(a[0]); cout <<"Before sorting array elements are: "; for (int i = 0; i < n; ++i) { cout <<a[i] << " "; } radixsort(a, n); cout <<"\nAfter sorting array elements are: "; for (int i = 0; i < n; ++i) { cout << a[i] << " "; } cout << "\n"; }
输出
Before sorting array elements are: 236 15 333 27 9 108 76 498 After sorting array elements are: 9 15 27 76 108 236 333 498
import java.io.*; public class Main { static void countsort(int a[], int n, int pos) { int output[] = new int[n + 1]; int max = (a[0] / pos) % 10; for (int i = 1; i < n; i++) { if (((a[i] / pos) % 10) > max) max = a[i]; } int count[] = new int[max + 1]; for (int i = 0; i < max; ++i) count[i] = 0; for (int i = 0; i < n; i++) count[(a[i] / pos) % 10]++; for (int i = 1; i < 10; i++) count[i] += count[i - 1]; for (int i = n - 1; i >= 0; i--) { output[count[(a[i] / pos) % 10] - 1] = a[i]; count[(a[i] / pos) % 10]--; } for (int i = 0; i < n; i++) a[i] = output[i]; } static void radixsort(int a[], int n) { int max = a[0]; for (int i = 1; i < n; i++) if (a[i] > max) max = a[i]; for (int pos = 1; max / pos > 0; pos *= 10) countsort(a, n, pos); } public static void main(String args[]) { int a[] = {236, 15, 333, 27, 9, 108, 76, 498}; int n = a.length; System.out.println("Before sorting array elements are: "); for (int i = 0; i < n; ++i) System.out.print(a[i] + " "); radixsort(a, n); System.out.println("\nAfter sorting array elements are: "); for (int i = 0; i < n; ++i) System.out.print(a[i] + " "); } }
输出
Before sorting array elements are: 236 15 333 27 9 108 76 498 After sorting array elements are: 9 15 27 76 108 236 333 498
def countsort(a, pos): n = len(a) output = [0] * n count = [0] * 10 for i in range(0, n): idx = a[i] // pos count[idx % 10] += 1 for i in range(1, 10): count[i] += count[i - 1] i = n - 1 while i >= 0: idx = a[i] // pos output[count[idx % 10] - 1] = a[i] count[idx % 10] -= 1 i -= 1 for i in range(0, n): a[i] = output[i] def radixsort(a): maximum = max(a) pos = 1 while maximum // pos > 0: countsort(a, pos) pos *= 10 a = [236, 15, 333, 27, 9, 108, 76, 498] print("Before sorting array elements are: ") print (a) radixsort(a) print("After sorting array elements are: ") print (a)
输出
Before sorting array elements are: [236, 15, 333, 27, 9, 108, 76, 498] After sorting array elements are: [9, 15, 27, 76, 108, 236, 333, 498]