- 数据结构与算法
- DSA - 首页
- DSA - 概述
- DSA - 环境搭建
- DSA - 算法基础
- DSA - 渐进分析
- 数据结构
- DSA - 数据结构基础
- DSA - 数据结构和类型
- DSA - 数组数据结构
- 链表
- DSA - 链表数据结构
- DSA - 双向链表数据结构
- DSA - 循环链表数据结构
- 栈与队列
- DSA - 栈数据结构
- DSA - 表达式解析
- DSA - 队列数据结构
- 搜索算法
- DSA - 搜索算法
- DSA - 线性搜索算法
- DSA - 二分搜索算法
- DSA - 插值搜索
- DSA - 跳跃搜索算法
- DSA - 指数搜索
- DSA - 斐波那契搜索
- DSA - 子列表搜索
- DSA - 哈希表
- 排序算法
- DSA - 排序算法
- DSA - 冒泡排序算法
- DSA - 插入排序算法
- DSA - 选择排序算法
- DSA - 归并排序算法
- DSA - 希尔排序算法
- DSA - 堆排序
- DSA - 桶排序算法
- DSA - 计数排序算法
- DSA - 基数排序算法
- DSA - 快速排序算法
- 图数据结构
- DSA - 图数据结构
- DSA - 深度优先遍历
- DSA - 广度优先遍历
- DSA - 生成树
- 树数据结构
- DSA - 树数据结构
- DSA - 树的遍历
- DSA - 二叉搜索树
- DSA - AVL树
- DSA - 红黑树
- DSA - B树
- DSA - B+树
- DSA - 伸展树
- DSA - 字典树
- DSA - 堆数据结构
- 递归
- DSA - 递归算法
- DSA - 使用递归实现汉诺塔
- DSA - 使用递归实现斐波那契数列
- 分治法
- DSA - 分治法
- DSA - 最大-最小问题
- DSA - Strassen矩阵乘法
- DSA - Karatsuba算法
- 贪心算法
- DSA - 贪心算法
- DSA - 旅行商问题(贪心法)
- DSA - Prim最小生成树
- DSA - Kruskal最小生成树
- DSA - Dijkstra最短路径算法
- DSA - 地图着色算法
- DSA - 分数背包问题
- DSA - 带截止日期的作业排序
- DSA - 最佳合并模式算法
- 动态规划
- DSA - 动态规划
- DSA - 矩阵链乘法
- DSA - Floyd-Warshall算法
- DSA - 0-1背包问题
- DSA - 最长公共子序列算法
- DSA - 旅行商问题(动态规划法)
- 近似算法
- DSA - 近似算法
- DSA - 顶点覆盖算法
- DSA - 集合覆盖问题
- DSA - 旅行商问题(近似法)
- 随机算法
- DSA - 随机算法
- DSA - 随机快速排序算法
- DSA - Karger最小割算法
- DSA - Fisher-Yates洗牌算法
- DSA有用资源
- DSA - 问答
- DSA - 快速指南
- DSA - 有用资源
- DSA - 讨论
C语言二分查找程序
二分查找是一种快速搜索算法,其运行时间复杂度为Ο(log n)。这种搜索算法基于分治的原理。为了使该算法正常工作,数据集合必须按排序形式排列。
C语言实现
#include <stdio.h>
#define MAX 20
// array of items on which linear search will be conducted.
int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void printline(int count) {
int i;
for(i = 0;i <count-1;i++) {
printf("=");
}
printf("=\n");
}
int find(int data) {
int lowerBound = 0;
int upperBound = MAX -1;
int midPoint = -1;
int comparisons = 0;
int index = -1;
while(lowerBound <= upperBound) {
printf("Comparison %d\n" , (comparisons +1) );
printf("lowerBound : %d, intArray[%d] = %d\n",lowerBound,lowerBound,
intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n",upperBound,upperBound,
intArray[upperBound]);
comparisons++;
// compute the mid point
// midPoint = (lowerBound + upperBound) / 2;
midPoint = lowerBound + (upperBound - lowerBound) / 2;
// data found
if(intArray[midPoint] == data) {
index = midPoint;
break;
} else {
// if data is larger
if(intArray[midPoint] < data) {
// data is in upper half
lowerBound = midPoint + 1;
}
// data is smaller
else {
// data is in lower half
upperBound = midPoint -1;
}
}
}
printf("Total comparisons made: %d" , comparisons);
return index;
}
void display() {
int i;
printf("[");
// navigate through all items
for(i = 0;i<MAX;i++) {
printf("%d ",intArray[i]);
}
printf("]\n");
}
void main() {
printf("Input Array: ");
display();
printline(50);
//find location of 1
int location = find(55);
// if element was found
if(location != -1)
printf("\nElement found at location: %d" ,(location+1));
else
printf("\nElement not found.");
}
输出
如果我们编译并运行上述程序,则会产生以下结果:
Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66 ] ================================================== Comparison 1 lowerBound : 0, intArray[0] = 1 upperBound : 19, intArray[19] = 66 Comparison 2 lowerBound : 10, intArray[10] = 15 upperBound : 19, intArray[19] = 66 Comparison 3 lowerBound : 15, intArray[15] = 34 upperBound : 19, intArray[19] = 66 Comparison 4 lowerBound : 18, intArray[18] = 55 upperBound : 19, intArray[19] = 66 Total comparisons made: 4 Element found at location: 19
binary_search_algorithm.htm
广告