- 能力倾向有用资源
- 能力倾向 - 问答
面积计算 - 例题解析
答案 - B
解析
We have: (l - b) = 33 and 2(l + b) = 134 or (l + b) = 67. Solving the two equations, we get: l = 50 and b = 17. ∴ Area = (l x b) = (50 x 17) m2 =850 m2.
答案 - A
解析
Let breadth = X meters. Then, length = (X+ 40) meters. Perimeter = 10600/53 =200 m ∴ 2[(X + 40) + X] = 200 2X + 40 = 100 2X = 120 ⇒X = 60. Hence, length = x + 40 = 100 m.
答案 - A
解析
l2 + b2 = (√(63 ))2=63 Also, lb = 37/2. (l + b)2 = (l2 + b2) + 2lb = 63 + 37 = 100 ⇒ (l + b) = 10. ∴ Perimeter = 2(l + b) = 20 cm.
答案 - B
解析
By pythogerous theorem Other side = √((34)2- (30)2) = 16 ⇒Area = (30 x 16) m2 = 480 m2
答案 - C
解析
Let length = X and breadth = Y. Then, 2 (X + Y) = 92 OR X + Y = 46 AND X2 + Y2 = (34)2 = 1156. Now, (X + Y)2 = (46)2 ⇔ (X2 + Y2) + 2XY = 2116 ⇔ 1156 + 2XY = 2116 ⇒ XY=480 ∴ Area = XY = 480 cm2.
答案 - A
解析
Let breadth = X. Then, length = 3X. Then, (3X - 9) (X + 9) = 3X * X + 81 ⇒3X2+27X-9X-81=3X2+81 18X=162 ⇒X=9 cm ∴ Length of the rectangle = 9 cm
题7 - 一个矩形公园的长与宽的比是2:1。如果一个人以18公里/小时的速度沿着公园的边界骑车,10分钟完成一圈,那么公园的面积(平方米)是多少?
答案 - D
解析
Perimeter = Distance covered in 10 min. =18000/60 x 10=3000 m Let length = 4X meters and breadth = X meters. Then, 2(2X +1X) = 3000 or X = 500. Length = 1000 m and Breadth = 500 m. ∴ Area = (1000 x 500) m2 = 500000 m2.
答案 - D
解析
Area of the square = 1/2 (diagonal)2= 1/2x7.22≡ 7.2x7.2/2=25.92 m2
答案 - B
解析
Let the diagonals of the squares be 3X and 7X respectively. Ratio of their areas = (1/2)*(3X)2 :( 1/2)*(7X)2 = 9X2: 49X2 = 9: 49.
答案 - B
解析
Side of first square = (80/4) = 20 cm; Side of second square = (64/4)cm = 16 cm. Area of third square = [(20)2 - (16)2] cm2 = (400 - 256) cm2 = 144 cm2. Side of third square = √144 cm = 12 cm. Required perimeter = (12 x 4) cm = 48 cm.
答案 - A
解析
Length of largest tile = H.C.F. of 3034 cm and 1804 cm = 82 cm. Area of each tile = (82 x 82) cm2. Required number of tiles 3034x1804/82x82 = 37x22=814.
答案 - A
解析
Let each side of the square be X. Then, area = X2. New side =(116X/100) =(29X/25). New area = (29X/25)2 Increase in area = (29X/25)2 - X2 =841/625X2 - X2=216/625X2 ⇒ Increase% = [(216/625X2x1/(X2))*100] % = 34.56%.
答案 - B
解析
Distance covered in one revolution = ((44 X 2000)/1000) = 88m. ⇒ 2πR = 88 ⇒ 2 x (22/7) x R = 88 ∴ R = 88 x (7/44) = 14 m.
答案 - A
解析
Let other diagonal = 2x cm. Since diagonals of a rhombus bisect each other at right angles, we have: (10)2 = (6)2 + (x)2 ⇒ x = √((10)2 - (6)2)= √64= 8 cm. So, other diagonal = 16 cm. ∴ Area of rhombus = (1/2) x (Product of diagonals) = ((1/2) x 12 x 16) cm2 = 96 cm2
答案 - A
解析
Area = (6.7914 x 10000) m2= 67914 m2. πR2= 67914 ⇒(R)2 = (67914 x (7/22)) ⇔ R = 147 m. Circumference = 2 π R = (2 x (22/7) x 147) m = 924 m. Cost of fencing = Rs. (9240 x 2.20) = Rs. 20328.
题16 - 梯形两条平行边的差是8厘米,它们之间的垂直距离是38厘米。如果梯形的面积是950平方厘米,求平行边的长度。
答案 - B
解析
Let the two parallel sides of the trapezium be X cm and Y cm. Then,X - Y = 8 And, (1/2) x (X+ Y) x 38 = 950 ⇒ (X +Y) = ((950 x 2)/38) ⇒ X + Y = 50 Solving (i) and (ii), we get: X = 29, Y = 21. So, the two parallel sides are 29 cm and 21 cm.
答案 - A
解析
Area of a parallelogram, A = bh (where b is the base and h is the height of the parallelogram) ⇒ (X2 - 48) = (X-6) (X + 3) ⇒ X=10 ⇒ Actual Area = 102-48=52 units
答案 - A
解析
Perimeter =2√(202+102 ) =20√5 cm
题19 - 如果两个正方形相似但不相等,较大正方形的对角线为8米。如果较小正方形的面积是较大正方形面积的1/2,则较小正方形的面积是多少?
答案 - B
解析
Area is larger square =1/2 x 82 =32 ⇒ Area is smaller square=32/2=16 m2
答案 - A
解析
We know the area of diagonals is 1/2 x (product of diagonals) Let the other diagonal be X So 300 = 1/2 x X x 20 ⇒ X=30 cm.
aptitude_area_calculation.htm
广告