- 能力倾向有用资源
- 能力倾向 - 问答
坐标几何 - 例题解析
答案 - A
解释
(-2, 3) lies in quadrant II.
答案 - C
解释
AB = √(2+4)2 + (-5-7)2 = √62+ (-12)2 = √36+144 = √180 =√36*5 = 6√5 units.
答案 - D
解释
OA = √62+ (-6)2 =√36+36 =√72 = √36*2 = 6√2 units.
答案 - B
解释
AB2= (3-0)2+ (1+2)2= (9+9) =18 BC2= (0-3)2+ (4-1)2= (9+9) =18 CD2= (0-3)2+ (1+2)2= (9+9) =18 DA2= (-3-0)2+ (1+2)2= (9+9) =18 ∴ AB= BC=CD=DA = √18 = √9*2 = 3√2 AC2=(0-0)2+(4+2)2= (0+36) =36 BD2= (-3-3)2+ (1-1)2= (36+0) =36 ∴ Diag AC = Diag BD = 6 Thus all sides are equal and the diagonals are equal. ∴ ABCD is a square.
答案 - B
解释
PQ2= (-2+4)2+ (-4+1)2= 22+ (-3)2= (4+9) =13 QR2= (4+2)2+ (0+4)2= (62+42) = (36+16) =52 RS2= (2-4)2= (3-0)2= (-2)2+32= (4+9) = 13 SP2= (2+4)2+ (3+1)2= (62+42) = (36+16) = 52 ∴ PQ=RS =√13 AND QR=SP =√52 PR2= (4+4)2+ (0+1)2= (82+12) = (64+1) =65 QS2= (2+2)2+ (3+4)2= (42+72) = (16+49) =65 ∴ Diag PR= Diag QS =√ 65 Thus, opposite sides are equal and diagonals are equal. ∴ ABCD is a rectangle.
答案 - B
解释
AB2= (-5+3)2+ (-5-2)2= (-2)2+ (-7)2= (4+49) =53 BC2= (2+5)2+ (-3+5)2= (7)2+ (2)2= (49+4) =53 CD2= (4-2)2+ (4+3)2= (22+72) = (4+49) =53 DA2= (4+3)2+ (4-2)2= (72+22) = (49+4) =53 ∴ AB=BC=CD=DA = √53 AC2= (2+3)2+ (-3-2)2= (52) + (-5)2= (25+25) = 50 BD2= (4+5)2+ (4+5)2= (92) + (92) = (81+81) =162 ∴ Diag AC ≠ Diag BD Thus all the sides are equal and diagonals are not equal. ∴ ABCD is a Rhombus.
题7 - 求顶点为A(10, -6), B(2, 5) 和 C(-1, 3)的三角形ABC的面积。
答案 - A
解释
Here x1=10, x2=2, X3 = -1 and y1= - 6, y2= 5, y3= 3 ∴ ∆= 1/2 {X1(y2-Y3) +x2(Y3-Y1) +X3 (Y1-Y2)} =1/2 {10(5-3) +2(3+6) - 1(- 6-5) = 1/2 (20+18+11) =49/2 sq.units.
答案 - A
解释
Here x1=-1, x2=2, x3=5 and y1=3, y2=h and Y3=-1 Now, ∆=0 ⇒ X1(y2-Y3) +x2(Y3-Y1) +X3(Y1-Y2) = 0 ⇒ -1(h+1) +2(-1-3) +5(3-h) =0 ⇒ -h-1-8+15-5h=0 ⇒ 6h=6 ⇒ h=1
答案 - C
解释
The directions of the centroid are {(6+4-1)/3, (- 2-3-4)/3} i.e. (3, - 3)
答案 - B
解释
Let the required proportion be x:1. At that point (4x-3/x+1, - 9 x+5/x+1) concurs with p (2, - 5) ∴ 4x-3/ ( x+1) =2 ⇒ 4x-3 = 2x+2 ⇒ 2x=5 ⇒ x=5/2 ∴ required proportion is 5/2:1 i.e. 5:2
答案 - A
解释
m= tan 30° = 1/√3
答案 - A
解释
tan x = 1/√3 ⇒ x=30°
答案 - B
解释
Slop of AB = y2-y1/x2-x1 = - 6-3/4+2 = - 9/6 = - 3/2
答案 - B
解释
3x+4y-5 = 0 ∴ 4y=-3x+5 ∴ y=-3/4x+5/4 ∴ slop = m =-3/4
答案 - C
解释
2x+3y - 4 =0 ⇒ 3y= - 2x+4 ⇒y= - 2x/3 +4/3 hx+6y+5 =0 ⇒ 6y =-hx-5 ⇒ y= - hx/6 - 5/6 The line will be parallel if - h/6 -2/3 ⇒ h= (2/3*6) = 4 ∴ h=4
答案 - D
解释
5x+3y+2 =0 = -5x-2 ⇒ y= -5x/3-2/3 3x- hy+6 =0 ⇒ hy = 3x+6 ⇒ y =3x/h+6/h The line will be perpendicular to each other if -5/3* 3/h= -1 ⇒ h=5. Hence h= 5.
aptitude_coordinate_geometry.htm
广告