- 能力倾向有用资源
- 能力倾向 - 问答
能力倾向 - 水管与水箱在线测验
以下测验提供与水管与水箱相关的多项选择题 (MCQ)。您需要阅读所有给出的答案,然后点击正确的答案。如果您不确定答案,可以使用显示答案按钮查看答案。您可以使用下一组测验按钮查看测验中的新一组问题。
答案:B
解释
Part filled in 1 min. = 3/7. remaining part = (1- 3/7)= 4/7 Let the required time be x min. More part, more time taken. (Direct) 3/7: 4/7:: 1: x ⇒ 3x/7 = (4/7*1) ⇒ x= 4/3 min.
问题 2 - 一个水泵可以在2小时内注满一个水箱。由于水箱漏水,需要7/3小时才能注满水箱。这个洞可以将注满的水箱排空需要多少时间
答案:D
解释
Part filled by the pump in 1 hr = 1/2 Net part filled by the pump and leak in 1 hr = 3/7 Emptying work done by the leak in 1 hr= (1/2 - 3/7)= 1/14 Leak can empty the tank in 14 hours.
问题 3 - 一个漏斗可以在40分钟内排空一个水箱。第二个水管的直径是第一个水管的两倍,也连接到水箱中进行排水。这两个水管一起可以将水箱排空需要多少时间
答案:B
解释
A pipe with double diameter will take half time. So, the second pipe can empty the full tank in 20 min. Part emptied by both in 1 min. (1/40+ 1/20) = 3/40 Time taken to empty the full tank = 40/3 min.
问题 4 - 两个水管可以分别在15小时和12小时内注满一个水箱,而第三个水管可以在4小时内排空水箱。如果水管分别在早上8点、9点和11点同时打开,水箱会在什么时候排空?
答案:D
解释
Let the tank be emptied in x hrs after 8 am. Work done by A in x hrs, by B in (x-1) hrs and C in (x-3) hrs = 0 ⇒x/15+ (x-1)/12- (x-3)/4 = 0 ⇒ 4x+5(x-1) - 15(x-3) = 0 ⇒6x= 40 ⇒x= 20/3 hrs. ⇒x= 6 hrs. 40 min after 8 am Hence the tank will be emptied at 14 hrs 40 min, i.e., 2:40 pm
问题 5 - 一个水库有三个水管A、B和C。A和B可以分别在3小时和4小时内注满水库,而C可以在1小时内排空完全注满的水库。如果水管分别在下午3点、4点和5点同时打开,水库将在什么时候最终排空?
答案:B
解释
Let the cistern be emptied in x hrs after 3 pm Work done by A in x hrs, by B in(x-1) hrs and by C in (x-2) hrs= 0 ⇒x/3 +x-1/4 ? (x-2) =0 ⇒ 4x+3(x-1)-12(x-2) = 0 ⇒5x=21 ⇒x= 4 hrs 12 min. Required time is 7.12 pm.
问题 6 - 一个大型油罐可以由两个管道A和B分别在1小时和40分钟内注满。如果B管道使用一段时间,然后A和B管道一起注满剩余的时间,那么从空状态注满油罐需要多长时间?
答案:D
解释
Let the total time taken be x minute. Then, (1/40*x/2) + (1/60+ 1/40) x/2= 1 ⇒ x/80 + x/48 = 1 ⇒3x+ 5x= 240 ⇒8x= 240 ⇒x= 30 Hence, the required time is 30 minutes.
问题 7 - 一个水箱底部的一个洞可以在6小时内排空满箱的水。一个水管以每分钟4升的速度注水。当水箱装满时,打开水管,由于漏水,水箱在8小时内被排空。水箱的容积是多少?
答案:B
解释
Part filled in 1 hour = (1/6-1/8)= 1/24 So, the inlet can fill the tank in 24 hours. Capacity of the tank= volume of water that flows in 24 hrs = (4*60*24) ltr. = 5760 liters.
答案:D
解释
T = xy/(x+y) = (36*45)/(36+45) = 1620/80 = 20 hours Or, Part filled by A in 1 hour = 1/36 Part filled by B in 1 hour = 1/45 Part filled by (A+B) in 1 hour = (1/36 + 1/45) = 1/20 ∴ Both the pipes can fill the tank in 20 hours.
问题 9 - 两个水管A和B可以分别在20分钟和24分钟内注满一个水箱。第三个水管C可以以每分钟3加仑的速度排水。如果A、B和C同时打开,在15分钟内注满水箱,水箱的容积(以加仑为单位)是多少?
答案:C
解释
Let the capacity of the tank = x gallons Quantity of the water filled in the tank in 1 min when all the pipes A, B and C are opened simultaneously= x/20 + x/24 - 3 According to question, x/20 + x/24 - 3 = x/15 or, x/20 + x/24 - x/15 = 3 or, (6x + 5x - 8x)/120 = 3 or, 3x/120 = 3 or, x = 120 gallons
问题 10 - 一个水管注满水箱的速度是另一个水管的三倍。如果两个水管一起在36分钟内注满水箱,那么较慢的水管单独注满水箱需要多长时间?
答案:D
解释
Let the time taken by faster pipe be x min ∴ 1/x + 1/3x = 1/36 Or, (3 +1)/3x = 1/36 Or, x = 48 min ∴ Time taken by slower pipe to fill the tank = 3*48min = 144 min