级数 - 例题解析



题1 - 找出等差数列 5, 8, 11, 14, 17... 的第九项和第十六项。

A - 40

B - 50

C - 60

D - 70

答案 - B

解释

In the given A.P. we have a=5, d= (8-5) = 3 
∴ Tn= a+ (n-1) d= 5+ (n-1)3 = 3n+2 
T16= (3*16+2) = 50

题2 - 等差数列 4, 9, 14, 19... 的第几项是 109?

A - 第22项

B - 第23项

C - 第24项

D - 第25项

答案 - A

解释

We have a =4 and d= (9-4) = 5 
Let the nth term 109. At that point 
(a+ (n-1) d= 109 ⇒ 4+ (n-1)*5 =109 
(n-1)*5= 105 ⇒ (n-1) = 21 ⇒ n= 22 
∴ 22nd term is 109.

题3 - 等差数列 7, 13, 19, 25... 205 中共有多少项?

A - 34

B - 35

C - 36

D - 37

答案 - A

解释

Let the given A.P contain A.P. contain n terms. At that point, 
A=7, d = (13-7)= 6 and Tn = 205 
∴ a+ (n-1) d =205 ⇒ 7+ (n-1)*6 = 198 ⇒ (n-1) =33 ⇒ n = 34 
Given A.P contains 34 terms. 

题4 - 一个等差数列的第六项是 12,第八项是 22。求其首项、公差和第十六项。

A - 61

B - 62

C - 63

D - 64

答案 - B

解释

Let, first term = a and normal contrast =d. 
T6 = 12 ⇒ a+5d= 12 …. (i) 
T8= 22 ⇒ a+7d = 22 … (ii) 
On subtracting (i) from (ii), we get 2d = 10 ⇒ d = 5 
Putting d= 5 in (i), we get a+5*5 = 12 ⇒ a= (12-25) =-13 
∴ First term = - 13, normal distinction = 5. 
T16= a+ 15d = - 13+15*5 = (75-13) = 62

题5 - 求等差数列 5, 9, 13, 17... 的前 17 项之和。

A - 627

B - 628

C - 629

D - 630

答案 - C

解释

Here a =5, d= (9-5) = 4 and n = 17 
Sn = n/2[2a+ (n-1) d] 
S17 = 17/2 [2*5+ (17-1)*4] = (17/2*74) = 629

题6 - 求数列 2 + 5 + 8 + ... + 182 的和。

A - 5612

B - 5712

C - 5812

D - 5912

答案 - A

解释

Here a = 2, d = (5-2) = 3 and Tn = 182. 
Tn = 182 ⇒ a+ (n-1) d = 182 ⇒ 2+ (n-1)*3 = 182 ⇒ 3n = 183 ⇒ n= 61. 
Sn = n/2[2a+ (n-1) d] 
=61/2 {2*2+(61-1)*3} = (61/2* 184) = (61*92) = 5612. 

答案 - D

解释

Let the numbers be (a-d), an and (a+d). At that point, 
(a-d) +a+ (a+d) = 15 ⇒ 3a = 15 ⇒ a = 5 
(a-d)*a*(a+d) = 80 ⇒ (5-d)*5 * (5+d) = 80 
⇒ (25-d2) = 16 = d2 =9 ⇒ d = 3 
Numbers are 2, 5, 8 or 8, 5, 2. 

题8 - 求等比数列 3, 6, 12, 24... 的第九项和第 n 项。

A - 768, 3n-1

B - 748, 5n-1

C - 758, 6n-1

D - 768, 6n-1

答案 - D

解释

Given numbers are in G.P in which a= 3 and r =6/3 = 2. 
∴ Tn = arn-1 ⇒ T9= 3*28 = (3*256) = 768 
Tn = 3*2n-1 = 6n-1

题9 - 如果一个等比数列的第四项和第九项分别是 54 和 13122,求其首项、公比和第六项。

A - 476

B - 486

C - 496

D - 506

答案 - B

解释

Let A be the first term and r be the basic proportion. At that point, 
T4 = 54 ⇒ ar³ =54 ... (i) 
T4 = 13122 ⇒ ar8 = 13122 ...(ii) 
On isolating (ii) by (i) , we get r5 = 13122/54 = 243 =(3)5 ⇒ r =3 
Putting r =3 in (i), we get a*27 =54 ⇒ a = 2 
∴ First term =2 and common ratio =3.
T6= ar5 = 2*35= 486. Hence, 6th term = 486.
aptitude_progression.htm
广告