能力倾向测试 - 基础算术示例
答案 - A
解释
Here a = 5, d = 8 - 5 = 3, n = 16 Using formula Tn = a + (n - 1)d T16 = 5 + (16 - 1) x 3 = 50
答案 - C
解释
Here a = 4, d = 9 - 4 = 5 Using formula Tn = a + (n - 1)d Tn = 4 + (n - 1) x 5 = 109 where 109 is the nth term. => 4 + 5n - 5 = 109 => 5n = 109 + 1 => n = 110 / 5 = 22
答案 - D
解释
Here a = 7, d = 13 - 7 = 6, Tn = 205 Using formula Tn = a + (n - 1)d Tn = 7 + (n - 1) x 6 = 205 where 205 is the nth term. => 7 + 6n - 6 = 205 => 6n = 205 - 1 => n = 204 / 6 = 34
答案 - A
解释
Using formula Tn = a + (n - 1)d T6 = a + (6 - 1)d = 12 ...(i) T8 = a + (8 - 1)d = 22 ...(ii) Substract (i) from (ii) => 2d = 10 => d = 5 Using (i) a = 12 - 5d = 12 - 25 = -13
答案 - B
解释
Using formula Tn = a + (n - 1)d T6 = a + (6 - 1)d = 12 ...(i) T8 = a + (8 - 1)d = 22 ...(ii) Substract (i) from (ii) => 2d = 10 => d = 5
答案 - C
解释
Using formula Tn = a + (n - 1)d T6 = a + (6 - 1)d = 12 ...(i) T8 = a + (8 - 1)d = 22 ...(ii) Substract (i) from (ii) => 2d = 10 => d = 5 Using (i) a = 12 - 5d = 12 - 25 = -13 ∴ T16 = -13 + (16 - 1) x 5 = 75 - 13 = 62
答案 - D
解释
Here a = 5, d = 9 - 5 = 4, n = 17 Using formula Sn = (n/2)[2a + (n - 1)d] S17 = (17/2)[2 x 5 + (17 - 1) x 4] = (17/2)(10 + 64) = 17 x 74 / 2 = 629
答案 - A
解释
Here a = 2, d = 5 - 2 = 3, Tn = 182 Using formula Tn = a + (n - 1)d a + (n - 1)d = 182 => 2 + (n - 1) x 3 = 182 => 3n = 183 => n = 61. Using formula Sn = (n/2)[2a + (n - 1)d] S61 = (61/2)[2 x 2 + (61 - 1) x 3] = (61/2)(4 + 180) = 61 x 184 / 2 = 5612
答案 - B
解释
Let've numbers are a - d, a and a + d Then a - d + a + a + d = 15 => 3a = 15 => a = 5 Now (a - d)a(a + d) = 80 => (5 - d) x 5 x (5 + d) = 80 => 25 - d2 = 16 => d2 = 9 => d = +3 or -3 ∴ numbers are either 2, 5, 8 or 8, 5, 2.
答案 - B
解释
Here a = 3, r = 6 / 3 = 2, T9 = ? Using formula Tn = ar(n - 1) T9 = 3 x 2(9 - 1) =3 x 28 =3 x 256 =768
答案 - A
解释
Using formula Tn = ar(n - 1) T4 = ar(4 - 1) = 54 => ar3 = 54 ...(i) T9 = ar(9 - 1) = 13122 => ar8 = 13122 ...(ii) Dividing (ii) by (i) => r5 = 13122 / 54 = 243 = (3)5 => r = 3 Using (i) a x 27 = 54 => a = 2
答案 - B
解释
Using formula Tn = ar(n - 1) T4 = ar(4 - 1) = 54 => ar3 = 54 ...(i) T9 = ar(9 - 1) = 13122 => ar8 = 13122 ...(ii) Dividing (ii) by (i) => r5 = 13122 / 54 = 243 = (3)5 => r = 3
答案 - C
解释
Using formula Tn = ar(n - 1) T4 = ar(4 - 1) = 54 => ar3 = 54 ...(i) T9 = ar(9 - 1) = 13122 => ar8 = 13122 ...(ii) Dividing (ii) by (i) => r5 = 13122 / 54 = 243 = (3)5 => r = 3 Using (i) a x 27 = 54 => a = 2 ∴ T6 = ar(6 - 1) = 2 x (3)5 = 2 x 243 = 486
答案 - A
解释
Let the numbers are y and 80 - y. Then 3y = 5(80-y) => 8y = 400 ∴ y = 50 and second number = 80 - 50 = 30.
答案 - B
解释
Let the number be y. Then (y / 3) - (y / 5) = 16 => 5y - 3y = 16 x 15 = 240 => 2y = 240 ∴ y = 120
答案 - C
解释
Let the numbers be 3y , 3y + 3, 3y + 6 Now 3y + 3y + 3 + 3y + 6 = 90 => 9y = 81 => y = 9 => largest number = 3y + 6 = 3 x 9 + 6 = 33
答案 - D
解释
Let the positive integer by y. Then y2 - 15y = 16 => y2 - 15y - 16 = 0 => y2 - 16y + y - 16 = 0 => y(y-16) + (y-16) = 0 => (y+1)(y-16)= 0 ∴ y = 16. as -1 is not a positive integer.
答案 - A
解释
Let the positive integer by y. Then 23y - 2y2 = 63 => 23y - 2y2 - 63 = 0 => 2y2 - 23y + 63 = 0 => 2y2 - 14y - 9y + 63 = 0 => 2y(y-7) - 9(y-7)= 0 => (2y-9)(y-7)= 0 ∴ y = 7. as 9/2 is not an integer.
答案 - B
解释
Let've number as 3y, 2y and 5y. Then 9y2 + 4y2 + 25y2 = 1862. => 38y2 = 1862 => y2 = 1862 / 38 = 49 => y = 7 ∴ smallest number = 2y = 2 x 7 = 14.
答案 - C
解释
Let the ten's digit is x and unit digit of number is y. Then x + y = 10 ...(i) (10x + y) - (10y - x) = 54 => 9x - 9y = 54 => x - y = 6 ...(ii) Adding (i) and (ii) 2x = 16 => x = 8 Using (i) y = 10 - x = 2 ∴ number is 82.
广告