- 能力倾向有用资源
- 能力倾向 - 问题 & 答案
能力倾向 - 数制
数字
在十进制数系中,有十个符号,即 0、1、2、3、4、5、6、7、8 和 9,称为数字。一个数由这些数字组成的组表示,称为数字。
面值
一个数字在数字中的面值是数字本身的值。例如,在 321 中,1 的面值是 1,2 的面值是 2,3 的面值是 3。
位值
一个数字在数字中的位值是数字乘以 10n 的值,其中 n 从 0 开始。例如,在 321 中
1 的位值 = 1 x 100 = 1 x 1 = 1
2 的位值 = 2 x 101 = 2 x 10 = 20
3 的位值 = 3 x 102 = 3 x 100 = 300
第 0 位数字称为个位数字,是能力倾向测试中最常用的主题。
数字类型
自然数 - n > 0,其中 n 是计数数;[1,2,3...]
整数 - n ≥ 0,其中 n 是计数数;[0,1,2,3...]。
整数 - n ≥ 0 或 n ≤ 0,其中 n 是计数数;...,-3,-2,-1,0,1,2,3... 是整数。
正整数 - n > 0;[1,2,3...]
负整数 - n < 0;[-1,-2,-3...]
非正整数 - n ≤ 0;[0,-1,-2,-3...]
非负整数 - n ≥ 0;[0,1,2,3...]
0 既不是正整数也不是负整数。
偶数 - n / 2 = 0,其中 n 是计数数;[0,2,4,...]
奇数 - n / 2 ≠ 0,其中 n 是计数数;[1,3,5,...]
质数 - 除了 1 之外只能被自身整除的数。
合数 - 大于 1 的非质数。例如,4、6、8、9 等。
互质数 - 如果两个自然数的最大公约数为 1,则它们是互质数。例如,(2,3)、(4,5) 是互质数。
0 是唯一一个不是自然数的整数。
每个自然数都是整数。
1 不是质数。
要测试一个数 p 是否为质数,找到一个整数 k,使得 k > √p。获取小于或等于 k 的所有质数,并将 p 除以这些质数中的每一个。如果没有任何数能整除 p,则 p 是质数,否则它不是质数。
Example: 191 is prime number or not? Solution: Step 1 - 14 > √191 Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13. Step 3 - 191 is not divisible by any above prime number. Result - 191 is a prime number. Example: 187 is prime number or not? Solution: Step 1 - 14 > √187 Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13. Step 3 - 187 is divisible by 11. Result - 187 is not a prime number.
1 既不是质数也不是合数。
2 是唯一的偶质数。
整除性
以下是检查数字整除性的技巧。
能被 2 整除 - 如果一个数的个位数字是 0、2、4、6 或 8,则该数能被 2 整除。
能被 3 整除 - 如果一个数的各位数字之和能被 3 整除,则该数能被 3 整除。
能被 4 整除 - 如果用最后两位数字组成的数能被 4 整除,则该数能被 4 整除。
能被 5 整除 - 如果一个数的个位数字是 0 或 5,则该数能被 5 整除。
能被 6 整除 - 如果一个数能被 2 和 3 整除,则该数能被 6 整除。
能被 8 整除 - 如果用最后三位数字组成的数能被 8 整除,则该数能被 8 整除。
能被 9 整除 - 如果一个数的各位数字之和能被 9 整除,则该数能被 9 整除。
能被 10 整除 - 如果一个数的个位数字是 0,则该数能被 10 整除。
能被 11 整除 - 如果奇数位数字之和与偶数位数字之和的差为 0 或能被 11 整除,则该数能被 11 整除。
Example: 64578 is divisible by 2 or not? Solution: Step 1 - Unit digit is 8. Result - 64578 is divisible by 2. Example: 64575 is divisible by 2 or not? Solution: Step 1 - Unit digit is 5. Result - 64575 is not divisible by 2.
Example: 64578 is divisible by 3 or not? Solution: Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30 which is divisible by 3. Result - 64578 is divisible by 3. Example: 64576 is divisible by 3 or not? Solution: Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28 which is not divisible by 3. Result - 64576 is not divisible by 3.
Example: 64578 is divisible by 4 or not? Solution: Step 1 - number formed using its last two digits is 78 which is not divisible by 4. Result - 64578 is not divisible by 4. Example: 64580 is divisible by 4 or not? Solution: Step 1 - number formed using its last two digits is 80 which is divisible by 4. Result - 64580 is divisible by 4.
Example: 64578 is divisible by 5 or not? Solution: Step 1 - Unit digit is 8. Result - 64578 is not divisible by 5. Example: 64575 is divisible by 5 or not? Solution: Step 1 - Unit digit is 5. Result - 64575 is divisible by 5.
Example: 64578 is divisible by 6 or not? Solution: Step 1 - Unit digit is 8. Number is divisible by 2. Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30 which is divisible by 3. Result - 64578 is divisible by 6. Example: 64576 is divisible by 6 or not? Solution: Step 1 - Unit digit is 8. Number is divisible by 2. Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28 which is not divisible by 3. Result - 64576 is not divisible by 6.
Example: 64578 is divisible by 8 or not? Solution: Step 1 - number formed using its last three digits is 578 which is not divisible by 8. Result - 64578 is not divisible by 8. Example: 64576 is divisible by 8 or not? Solution: Step 1 - number formed using its last three digits is 576 which is divisible by 8. Result - 64576 is divisible by 8.
Example: 64579 is divisible by 9 or not? Solution: Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 9 = 31 which is not divisible by 9. Result - 64579 is not divisible by 9. Example: 64575 is divisible by 9 or not? Solution: Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 5 = 27 which is divisible by 9. Result - 64575 is divisible by 9.
Example: 64575 is divisible by 10 or not? Solution: Step 1 - Unit digit is 5. Result - 64578 is not divisible by 10. Example: 64570 is divisible by 10 or not? Solution: Step 1 - Unit digit is 0. Result - 64570 is divisible by 10.
Example: 64575 is divisible by 11 or not? Solution: Step 1 - difference between sum of digits at odd places and sum of digits at even places = (6+5+5) - (4+7) = 5 which is not divisible by 11. Result - 64575 is not divisible by 11. Example: 64075 is divisible by 11 or not? Solution: Step 1 - difference between sum of digits at odd places and sum of digits at even places = (6+0+5) - (4+7) = 0. Result - 64075 is divisible by 11.
除法技巧
如果一个数 n 能被两个互质数 a、b 整除,则 n 能被 ab 整除。
(a-b) 始终能整除 (an - bn),如果 n 是自然数。
(a+b) 始终能整除 (an - bn),如果 n 是偶数。
(a+b) 始终能整除 (an + bn),如果 n 是奇数。
除法算法
当一个数被另一个数除时
级数
以下是基本数列的公式
(1+2+3+...+n) = (1/2)n(n+1)
(12+22+32+...+n2) = (1/6)n(n+1)(2n+1)
(13+23+33+...+n3) = (1/4)n2(n+1)2
基本公式
这些是基本公式
(a + b)2 = a2 + b2 + 2ab
(a - b)2 = a2 + b2 - 2ab
(a + b)2 - (a - b)2 = 4ab
(a + b)2 + (a - b)2 = 2(a2 + b2)
(a2 - b2) = (a + b)(a - b)
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
(a3 + b3) = (a + b)(a2 - ab + b2)
(a3 - b3) = (a - b)(a2 + ab + b2)
(a3 + b3 + c3 - 3abc) = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)