能力倾向 - 数制



数字

在十进制数系中,有十个符号,即 0、1、2、3、4、5、6、7、8 和 9,称为数字。一个数由这些数字组成的组表示,称为数字。

面值

一个数字在数字中的面值是数字本身的值。例如,在 321 中,1 的面值是 1,2 的面值是 2,3 的面值是 3。

位值

一个数字在数字中的位值是数字乘以 10n 的值,其中 n 从 0 开始。例如,在 321 中

  • 1 的位值 = 1 x 100 = 1 x 1 = 1

  • 2 的位值 = 2 x 101 = 2 x 10 = 20

  • 3 的位值 = 3 x 102 = 3 x 100 = 300

  • 第 0 位数字称为个位数字,是能力倾向测试中最常用的主题。

数字类型

  1. 自然数 - n > 0,其中 n 是计数数;[1,2,3...]

  2. 整数 - n ≥ 0,其中 n 是计数数;[0,1,2,3...]。

  3. 0 是唯一一个不是自然数的整数。

    每个自然数都是整数。

  4. 整数 - n ≥ 0 或 n ≤ 0,其中 n 是计数数;...,-3,-2,-1,0,1,2,3... 是整数。

    • 正整数 - n > 0;[1,2,3...]

    • 负整数 - n < 0;[-1,-2,-3...]

    • 非正整数 - n ≤ 0;[0,-1,-2,-3...]

    • 非负整数 - n ≥ 0;[0,1,2,3...]

    0 既不是正整数也不是负整数。

  5. 偶数 - n / 2 = 0,其中 n 是计数数;[0,2,4,...]

  6. 奇数 - n / 2 ≠ 0,其中 n 是计数数;[1,3,5,...]

  7. 质数 - 除了 1 之外只能被自身整除的数。

  8. 1 不是质数。

    要测试一个数 p 是否为质数,找到一个整数 k,使得 k > √p。获取小于或等于 k 的所有质数,并将 p 除以这些质数中的每一个。如果没有任何数能整除 p,则 p 是质数,否则它不是质数。

    Example: 191 is prime number or not?
    Solution: 
    Step 1 - 14 > √191
    Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13.
    Step 3 - 191 is not divisible by any above prime number.
    Result - 191 is a prime number.
    
    Example: 187 is prime number or not?
    Solution: 
    Step 1 - 14 > √187
    Step 2 - Prime numbers less than 14 are 2,3,5,7,11 and 13.
    Step 3 - 187 is divisible by 11.
    Result - 187 is not a prime number.
    
  9. 合数 - 大于 1 的非质数。例如,4、6、8、9 等。

  10. 1 既不是质数也不是合数。

    2 是唯一的偶质数。

  11. 互质数 - 如果两个自然数的最大公约数为 1,则它们是互质数。例如,(2,3)、(4,5) 是互质数。

整除性

以下是检查数字整除性的技巧。

  1. 能被 2 整除 - 如果一个数的个位数字是 0、2、4、6 或 8,则该数能被 2 整除。

  2. Example: 64578 is divisible by 2 or not?
    Solution: 
    Step 1 - Unit digit is 8.
    Result - 64578 is divisible by 2.
    
    Example: 64575 is divisible by 2 or not?
    Solution: 
    Step 1 - Unit digit is 5.
    Result - 64575 is not divisible by 2.
    
  3. 能被 3 整除 - 如果一个数的各位数字之和能被 3 整除,则该数能被 3 整除。

  4. Example: 64578 is divisible by 3 or not?
    Solution: 
    Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30 
    which is divisible by 3.
    Result - 64578 is divisible by 3.
    
    Example: 64576 is divisible by 3 or not?
    Solution: 
    Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28 
    which is not divisible by 3.
    Result - 64576 is not divisible by 3.
    
  5. 能被 4 整除 - 如果用最后两位数字组成的数能被 4 整除,则该数能被 4 整除。

  6. Example: 64578 is divisible by 4 or not?
    Solution: 
    Step 1 - number formed using its last two digits is 78 
    which is not divisible by 4.
    Result - 64578 is not divisible by 4.
    
    Example: 64580 is divisible by 4 or not?
    Solution: 
    Step 1 - number formed using its last two digits is 80 
    which is divisible by 4.
    Result - 64580 is divisible by 4.
    
  7. 能被 5 整除 - 如果一个数的个位数字是 0 或 5,则该数能被 5 整除。

  8. Example: 64578 is divisible by 5 or not?
    Solution: 
    Step 1 - Unit digit is 8.
    Result - 64578 is not divisible by 5.
    
    Example: 64575 is divisible by 5 or not?
    Solution: 
    Step 1 - Unit digit is 5.
    Result - 64575 is divisible by 5.
    
  9. 能被 6 整除 - 如果一个数能被 2 和 3 整除,则该数能被 6 整除。

  10. Example: 64578 is divisible by 6 or not?
    Solution: 
    Step 1 - Unit digit is 8. Number is divisible by 2.
    Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 8 = 30 
    which is divisible by 3.
    Result - 64578 is divisible by 6.
    
    Example: 64576 is divisible by 6 or not?
    Solution: 
    Step 1 - Unit digit is 8. Number is divisible by 2.
    Step 2 - Sum of its digits is 6 + 4 + 5 + 7 + 6 = 28 
    which is not divisible by 3.
    Result - 64576 is not divisible by 6.
    
  11. 能被 8 整除 - 如果用最后三位数字组成的数能被 8 整除,则该数能被 8 整除。

  12. Example: 64578 is divisible by 8 or not?
    Solution: 
    Step 1 - number formed using its last three digits is 578 
    which is not divisible by 8.
    Result - 64578 is not divisible by 8.
    
    Example: 64576 is divisible by 8 or not?
    Solution: 
    Step 1 - number formed using its last three digits is 576 
    which is divisible by 8.
    Result - 64576 is divisible by 8.
    
  13. 能被 9 整除 - 如果一个数的各位数字之和能被 9 整除,则该数能被 9 整除。

  14. Example: 64579 is divisible by 9 or not?
    Solution: 
    Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 9 = 31 
    which is not divisible by 9.
    Result - 64579 is not divisible by 9.
    
    Example: 64575 is divisible by 9 or not?
    Solution: 
    Step 1 - Sum of its digits is 6 + 4 + 5 + 7 + 5 = 27 
    which is divisible by 9.
    Result - 64575 is divisible by 9.
    
  15. 能被 10 整除 - 如果一个数的个位数字是 0,则该数能被 10 整除。

  16. Example: 64575 is divisible by 10 or not?
    Solution: 
    Step 1 - Unit digit is 5.
    Result - 64578 is not divisible by 10.
    
    Example: 64570 is divisible by 10 or not?
    Solution: 
    Step 1 - Unit digit is 0.
    Result - 64570 is divisible by 10.
    
  17. 能被 11 整除 - 如果奇数位数字之和与偶数位数字之和的差为 0 或能被 11 整除,则该数能被 11 整除。

  18. Example: 64575 is divisible by 11 or not?
    Solution: 
    Step 1 - difference between sum of digits at odd places 
    and sum of digits at even places = (6+5+5) - (4+7) = 5 
    which is not divisible by 11.
    Result - 64575 is not divisible by 11.
    
    Example: 64075 is divisible by 11 or not?
    Solution: 
    Step 1 - difference between sum of digits at odd places 
    and sum of digits at even places = (6+0+5) - (4+7) = 0.
    Result - 64075 is divisible by 11.
    

除法技巧

  1. 如果一个数 n 能被两个互质数 a、b 整除,则 n 能被 ab 整除。

  2. (a-b) 始终能整除 (an - bn),如果 n 是自然数。

  3. (a+b) 始终能整除 (an - bn),如果 n 是偶数。

  4. (a+b) 始终能整除 (an + bn),如果 n 是奇数。

除法算法

当一个数被另一个数除时

被除数 = (除数 x 商) + 余数

级数

以下是基本数列的公式

  1. (1+2+3+...+n) = (1/2)n(n+1)

  2. (12+22+32+...+n2) = (1/6)n(n+1)(2n+1)

  3. (13+23+33+...+n3) = (1/4)n2(n+1)2

基本公式

这些是基本公式

(a + b)2 = a2 + b2 + 2ab
(a - b)2 = a2 + b2 - 2ab
(a + b)2 - (a - b)2 = 4ab
(a + b)2 + (a - b)2 = 2(a2 + b2)
(a2 - b2) = (a + b)(a - b)
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
(a3 + b3) = (a + b)(a2 - ab + b2)
(a3 - b3) = (a - b)(a2 + ab + b2)
(a3 + b3 + c3 - 3abc) = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
广告