- 数字电子教程
- 数字电子 - 首页
- 数字电子基础
- 数字系统类型
- 信号类型
- 逻辑电平与脉冲波形
- 数字系统组件
- 数字逻辑运算
- 数字系统优势
- 数制
- 数制
- 二进制数表示
- 二进制运算
- 带符号二进制运算
- 八进制运算
- 十六进制运算
- 补码运算
- 进制转换
- 进制转换
- 二进制到十进制转换
- 十进制到二进制转换
- 二进制到八进制转换
- 八进制到二进制转换
- 八进制到十进制转换
- 十进制到八进制转换
- 十六进制到二进制转换
- 二进制到十六进制转换
- 十六进制到十进制转换
- 十进制到十六进制转换
- 八进制到十六进制转换
- 十六进制到八进制转换
- 二进制编码
- 二进制编码
- 8421 BCD码
- 余3码
- 格雷码
- ASCII码
- EBCDIC码
- 编码转换
- 错误检测与纠错码
- 逻辑门
- 逻辑门
- 与门
- 或门
- 非门
- 通用门
- 异或门
- 异或非门
- CMOS逻辑门
- 使用二极管电阻逻辑的或门
- 与门与或门
- 双电平逻辑实现
- 阈值逻辑
- 布尔代数
- 布尔代数
- 布尔代数定律
- 布尔函数
- 德摩根定理
- SOP和POS形式
- POS到标准POS形式
- 最小化技术
- 卡诺图最小化
- 三变量卡诺图
- 四变量卡诺图
- 五变量卡诺图
- 六变量卡诺图
- 无关项条件
- 奎因-麦克斯拉斯基方法
- 最小项和最大项
- 规范式和标准式
- 最大项表示
- 使用布尔代数化简
- 组合逻辑电路
- 数字组合电路
- 数字运算电路
- 多路选择器
- 多路选择器设计流程
- MUX通用门
- 使用4:1 MUX的2变量函数
- 使用8:1 MUX的3变量函数
- 多路分配器
- MUX与DEMUX
- 奇偶校验位生成器和校验器
- 比较器
- 编码器
- 键盘编码器
- 优先编码器
- 译码器
- 算术逻辑单元
- 7段LED显示器
- 代码转换器
- 代码转换器
- 二进制到十进制转换器
- 十进制到BCD转换器
- BCD到十进制转换器
- 二进制到格雷码转换器
- 格雷码到二进制转换器
- BCD到余3码转换器
- 余3码到BCD转换器
- 加法器
- 半加器
- 全加器
- 串行加法器
- 并行加法器
- 使用半加器的全加器
- 半加器与全加器
- 使用NAND门的全加器
- 使用NAND门的半加器
- 二进制加法/减法器
- 减法器
- 半减器
- 全减器
- 并行减法器
- 使用2个半减器的全减器
- 使用NAND门的半减器
- 时序逻辑电路
- 数字时序电路
- 时钟信号和触发
- 锁存器
- 移位寄存器
- 移位寄存器应用
- 二进制寄存器
- 双向移位寄存器
- 计数器
- 二进制计数器
- 非二进制计数器
- 同步计数器设计
- 同步计数器与异步计数器
- 有限状态机
- 算法状态机
- 触发器
- 触发器
- 触发器转换
- D触发器
- JK触发器
- T触发器
- SR触发器
- 带时钟的SR触发器
- 无时钟的SR触发器
- 带时钟的JK触发器
- JK到T触发器
- SR到JK触发器
- 触发方法:触发器
- 边沿触发触发器
- 主从JK触发器
- 竞争冒险现象
- A/D和D/A转换器
- 模数转换器
- 数模转换器
- DAC和ADC集成电路
- 逻辑门的实现
- 用NAND门实现非门
- 用NAND门实现或门
- 用NAND门实现与门
- 用NAND门实现或非门
- 用NAND门实现异或门
- 用NAND门实现异或非门
- 用NOR门实现非门
- 用NOR门实现或门
- 用NOR门实现与门
- 用NOR门实现与非门
- 用NOR门实现异或门
- 用NOR门实现异或非门
- 使用CMOS的NAND/NOR门
- 使用NAND门的全减器
- 使用2:1 MUX的与门
- 使用2:1 MUX的或门
- 使用2:1 MUX的非门
- 存储器件
- 存储器件
- RAM和ROM
- 缓存内存设计
- 可编程逻辑器件
- 可编程逻辑器件
- 可编程逻辑阵列
- 可编程阵列逻辑
- 现场可编程门阵列
- 数字电子系列
- 数字电子系列
- CPU架构
- CPU架构
- 数字电子资源
- 数字电子 - 快速指南
- 数字电子 - 资源
- 数字电子 - 讨论
二进制到十进制转换器
一种用于将数据从二进制格式转换为十进制格式的代码转换器称为二进制到十进制转换器。
二进制到十进制转换器的输入是以0和1格式表示的数字。然后,转换器使用算法将输入的二进制数转换为等效的十进制数。最后,它生成十进制代码作为输出。
现在让我们了解二进制到十进制转换器的逻辑电路实现。
下面给出了**两位二进制到十进制转换器的真值表**。
二进制输入 | 十进制输出 | |
---|---|---|
B1 | B0 | |
0 | 0 | Q0 |
0 | 1 | Q1 |
1 | 0 | Q2 |
1 | 1 | Q3 |
现在让我们推导出每个十进制输出的逻辑表达式。
$$\mathrm{Q_{0} \: = \: \overline{B_{1}}\: \cdot \:\overline{B_{0}}}$$
$$\mathrm{Q_{1} \: = \: \overline{B_{1}}\: \cdot \: B_{0}}$$
$$\mathrm{Q_{2} \: = \: B_{1} \: \cdot \:\overline{B_{0}}}$$
$$\mathrm{Q_{3} \: = \: B_{1} \: \cdot \: B_{0}}$$
二进制到十进制转换器的逻辑电路图如下所示。
该电路将2位二进制数转换为等效的十进制数。但是,我们可以用相同的方式实现任何位数的二进制到十进制转换器。
广告