- 数字电子教程
- 数字电子 - 首页
- 数字电子基础
- 数字系统类型
- 信号类型
- 逻辑电平和脉冲波形
- 数字系统组件
- 数字逻辑运算
- 数字系统优势
- 数制
- 数制
- 二进制数表示
- 二进制运算
- 有符号二进制运算
- 八进制运算
- 十六进制运算
- 补码运算
- 进制转换
- 进制转换
- 二进制转十进制
- 十进制转二进制
- 二进制转八进制
- 八进制转二进制
- 八进制转十进制
- 十进制转八进制
- 十六进制转二进制
- 二进制转十六进制
- 十六进制转十进制
- 十进制转十六进制
- 八进制转十六进制
- 十六进制转八进制
- 二进制码
- 二进制码
- 8421 BCD码
- 余三码
- 格雷码
- ASCII码
- EBCDIC码
- 码制转换
- 错误检测与纠正码
- 逻辑门
- 逻辑门
- 与门
- 或门
- 非门
- 通用门
- 异或门
- 异或非门
- CMOS逻辑门
- 用二极管电阻逻辑实现或门
- 与门与或门比较
- 两级逻辑实现
- 阈值逻辑
- 布尔代数
- 布尔代数
- 布尔代数定律
- 布尔函数
- 德摩根定理
- 标准与或式和标准或与式
- 标准或与式转标准或与式
- 化简技术
- 卡诺图化简
- 三变量卡诺图
- 四变量卡诺图
- 五变量卡诺图
- 六变量卡诺图
- 无关项
- 奎因-麦克拉斯基法
- 最小项和最大项
- 规范式和标准式
- 最大项表示
- 使用布尔代数化简
- 组合逻辑电路
- 数字组合电路
- 数字运算电路
- 多路选择器
- 多路选择器设计步骤
- 多路选择器通用门
- 用4:1多路选择器实现2变量函数
- 用8:1多路选择器实现3变量函数
- 多路分配器
- 多路选择器与多路分配器比较
- 奇偶校验位生成器和校验器
- 比较器
- 编码器
- 键盘编码器
- 优先编码器
- 译码器
- 算术逻辑单元
- 七段LED显示
- 代码转换器
- 代码转换器
- 二进制转十进制转换器
- 十进制转BCD转换器
- BCD转十进制转换器
- 二进制转格雷码转换器
- 格雷码转二进制转换器
- BCD转余三码转换器
- 余三码转BCD转换器
- 加法器
- 半加器
- 全加器
- 串行加法器
- 并行加法器
- 用半加器实现全加器
- 半加器与全加器比较
- 用NAND门实现全加器
- 用NAND门实现半加器
- 二进制加法器-减法器
- 减法器
- 半减器
- 全减器
- 并行减法器
- 用两个半减器实现全减器
- 用NAND门实现半减器
- 时序逻辑电路
- 数字时序电路
- 时钟信号和触发
- 锁存器
- 移位寄存器
- 移位寄存器应用
- 二进制寄存器
- 双向移位寄存器
- 计数器
- 二进制计数器
- 非二进制计数器
- 同步计数器设计
- 同步计数器与异步计数器比较
- 有限状态机
- 算法状态机
- 触发器
- 触发器
- 触发器转换
- D触发器
- JK触发器
- T触发器
- SR触发器
- 带时钟SR触发器
- 无时钟SR触发器
- 带时钟JK触发器
- JK触发器转T触发器
- SR触发器转JK触发器
- 触发方法:触发器
- 边沿触发触发器
- 主从JK触发器
- 竞争冒险现象
- A/D和D/A转换器
- 模数转换器
- 数模转换器
- 数模转换器和模数转换器IC
- 逻辑门的实现
- 用NAND门实现非门
- 用NAND门实现或门
- 用NAND门实现与门
- 用NAND门实现与非门
- 用NAND门实现异或门
- 用NAND门实现异或非门
- 用NOR门实现非门
- 用NOR门实现或门
- 用NOR门实现与门
- 用NOR门实现与非门
- 用NOR门实现异或门
- 用NOR门实现异或非门
- 用CMOS实现与非门/或非门
- 用NAND门实现全减器
- 用2:1多路选择器实现与门
- 用2:1多路选择器实现或门
- 用2:1多路选择器实现非门
- 存储器件
- 存储器件
- RAM和ROM
- 高速缓存存储器设计
- 可编程逻辑器件
- 可编程逻辑器件
- 可编程逻辑阵列
- 可编程阵列逻辑
- 现场可编程门阵列
- 数字电子器件系列
- 数字电子器件系列
- CPU架构
- CPU架构
- 数字电子资源
- 数字电子 - 快速指南
- 数字电子 - 资源
- 数字电子 - 讨论
用NOR门实现XNOR门
NOR门是一种通用逻辑门,因此我们只需要使用NOR门就可以实现XNOR逻辑功能。
用NOR门设计XNOR门
为了用NOR门设计XNOR门,我们首先根据NOR逻辑推导出XNOR逻辑函数,如下所示。
XNOR门的输出由下式给出:
$$\mathrm{Y \: = \: AB \: + \: \bar{A} \: \bar{B}}$$
为了用NOR门实现XNOR门逻辑,我们至少需要4个NOR门。下图显示了用NOR门实现XNOR门的电路图。
在这个电路中,输出是:
$$\mathrm{Y \: = \: \overline{\overline{A \: + \: \overline{(A \: + \: B)}} \: + \: \overline{B \: + \: \overline{(A \: + \: B)}}}}$$
$$\mathrm{Y \: = \: \overline{\overline{A \: + \: \overline{(A \: + \: B)}}} \: \cdot \: \overline{ \overline{B \: + \: \overline{(A \: + \: B)}}}}$$
$$\mathrm{Y \: = \: (A \: + \: \overline{(A \: + \: B)}) \: \cdot \: (B \: + \: \overline{(A \: + \: B)})}$$
$$\mathrm{Y \: = \: (A \: + \: (\bar{A} \: \cdot \: \bar{B})) \: (B \: + \: (\bar{A} \: \cdot \: \bar{B}))}$$
$$\mathrm{Y \: = \: (A \: + \: \bar{A}) \: (A \: + \: \bar{B}) \: (\bar{A} \: + \: B) \: (B \: + \: \bar{B})}$$
$$\mathrm{Y \: = \: (A \: + \: \bar{B}) \: (\bar{A} \: + \: B)}$$
$$\mathrm{Y \: = \: A\cdot\bar{A} \: + \: \bar{A}\cdot\bar{B} \: + \: A\cdot B \: + \: B\cdot\bar{B}}$$
$$\mathrm{\therefore \: Y \: = \: A\cdot B \: + \: \bar{A}\cdot\bar{B}}$$
这就是XNOR门的期望输出。因此,上述NOR逻辑电路执行XNOR运算。