- 数字电子教程
- 数字电子 - 首页
- 数字电子基础
- 数字系统类型
- 信号类型
- 逻辑电平和脉冲波形
- 数字系统组件
- 数字逻辑运算
- 数字系统优势
- 数制
- 数制
- 二进制数表示
- 二进制算术
- 有符号二进制算术
- 八进制算术
- 十六进制算术
- 补码算术
- 进制转换
- 进制转换
- 二进制到十进制转换
- 十进制到二进制转换
- 二进制到八进制转换
- 八进制到二进制转换
- 八进制到十进制转换
- 十进制到八进制转换
- 十六进制到二进制转换
- 二进制到十六进制转换
- 十六进制到十进制转换
- 十进制到十六进制转换
- 八进制到十六进制转换
- 十六进制到八进制转换
- 二进制代码
- 二进制代码
- 8421 BCD码
- 余三码
- 格雷码
- ASCII码
- EBCDIC码
- 代码转换
- 错误检测与纠错码
- 逻辑门
- 逻辑门
- 与门
- 或门
- 非门
- 通用门
- 异或门
- 同或门
- CMOS逻辑门
- 使用二极管电阻逻辑的或门
- 与门与或门
- 两级逻辑实现
- 阈值逻辑
- 布尔代数
- 布尔代数
- 布尔代数定律
- 布尔函数
- 德摩根定理
- 标准与或式和标准或与式
- 标准或与式转换为标准或与式
- 最小化技术
- 卡诺图化简
- 三变量卡诺图
- 四变量卡诺图
- 五变量卡诺图
- 六变量卡诺图
- 无关项
- 奎因-麦克斯拉斯基法
- 最小项和最大项
- 规范式和标准式
- 最大项表示
- 使用布尔代数化简
- 组合逻辑电路
- 数字组合电路
- 数字算术电路
- 多路选择器
- 多路选择器设计流程
- 多路选择器通用门
- 使用4:1多路选择器的2变量函数
- 使用8:1多路选择器的3变量函数
- 多路分配器
- 多路选择器与多路分配器
- 奇偶校验位发生器和校验器
- 比较器
- 编码器
- 键盘编码器
- 优先编码器
- 译码器
- 算术逻辑单元
- 7段LED显示器
- 代码转换器
- 代码转换器
- 二进制到十进制转换器
- 十进制到BCD转换器
- BCD到十进制转换器
- 二进制到格雷码转换器
- 格雷码到二进制转换器
- BCD到余三码转换器
- 余三码到BCD转换器
- 加法器
- 半加器
- 全加器
- 串行加法器
- 并行加法器
- 使用半加器的全加器
- 半加器与全加器
- 使用与非门的全加器
- 使用与非门的半加器
- 二进制加法/减法器
- 减法器
- 半减器
- 全减器
- 并行减法器
- 使用两个半减器的全减器
- 使用与非门的半减器
- 时序逻辑电路
- 数字时序电路
- 时钟信号和触发
- 锁存器
- 移位寄存器
- 移位寄存器应用
- 二进制寄存器
- 双向移位寄存器
- 计数器
- 二进制计数器
- 非二进制计数器
- 同步计数器设计
- 同步计数器与异步计数器
- 有限状态机
- 算法状态机
- 触发器
- 触发器
- 触发器转换
- D触发器
- JK触发器
- T触发器
- SR触发器
- 带时钟SR触发器
- 无时钟SR触发器
- 带时钟JK触发器
- JK触发器到T触发器
- SR触发器到JK触发器
- 触发方法:触发器
- 边沿触发触发器
- 主从JK触发器
- 竞争冒险现象
- A/D和D/A转换器
- 模数转换器
- 数模转换器
- 数模转换器和模数转换器集成电路
- 逻辑门的实现
- 用与非门实现非门
- 用与非门实现或门
- 用与非门实现与门
- 用与非门实现与非门
- 用与非门实现异或门
- 用与非门实现同或门
- 用或非门实现非门
- 用或非门实现或门
- 用或非门实现与门
- 用或非门实现与非门
- 用或非门实现异或门
- 用或非门实现同或门
- 使用CMOS的与非门/或非门
- 使用与非门的全减器
- 使用2:1多路选择器的与门
- 使用2:1多路选择器的或门
- 使用2:1多路选择器的非门
- 存储器件
- 存储器件
- RAM和ROM
- 高速缓存存储器设计
- 可编程逻辑器件
- 可编程逻辑器件
- 可编程逻辑阵列
- 可编程阵列逻辑
- 现场可编程门阵列
- 数字电子系列
- 数字电子系列
- CPU架构
- CPU架构
- 数字电子资源
- 数字电子 - 快速指南
- 数字电子 - 资源
- 数字电子 - 讨论
二进制到格雷码转换器
二进制到格雷码转换器是一种可以将二进制代码转换为等效格雷码的代码转换器。
二进制到格雷码转换器接收二进制数作为输入,并产生相应的格雷码作为输出。
以下是解释4位二进制到格雷码转换器操作的真值表。
二进制码 | 格雷码 | ||||||
---|---|---|---|---|---|---|---|
B3 | B2 | B1 | B0 | G3 | G2 | G1 | G0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
让我们推导出格雷码输出位的布尔表达式。为此,我们将使用卡诺图技术简化真值表。
格雷码位G0的卡诺图
下图显示了为了获得格雷码位G0的布尔表达式而进行的卡诺图简化。
因此,格雷码位G0的布尔表达式为:
$$\mathrm{G_{0} \: = \: \overline{B_{1}} \: B_{0} \: + \ B_{1} \: \overline{B_{0}} \: = \: B_{0} \: \oplus \: B_{1}}$$
格雷码位G1的卡诺图
格雷码位G1的卡诺图简化如下所示:
因此,格雷码位G1的布尔表达式为:
$$\mathrm{G_{1} \: = \: \overline{B_{2}} \: B_{1} \: + \ B_{2} \: \overline{B_{1}} \: = \: B_{1} \: \oplus \: B_{2}}$$
格雷码位G2的卡诺图
格雷码位G2的卡诺图简化如下图所示:
格雷码位G2的布尔表达式将为:
$$\mathrm{G_{2} \: = \: \overline{B_{3}} \: B_{2} \: + \ B_{3} \: \overline{B_{2}} \: = \: B_{2} \: \oplus \: B_{3}}$$
格雷码位G3的卡诺图
格雷码位G3的卡诺图简化如下图所示:
因此,格雷码位G3的布尔表达式为:
$$\mathrm{G_{3} \: = \: B_{3}}$$
现在让我们利用这些布尔表达式来实现二进制到格雷码转换器的逻辑电路。
下图显示了4位二进制码到格雷码转换器的逻辑电路图:
该电路可以将4位二进制数转换为等效的格雷码。
我们可以遵循相同的程序来设计任何位数的二进制到格雷码转换器。