- 数字电子教程
- 数字电子 - 首页
- 数字电子基础
- 数字系统类型
- 信号类型
- 逻辑电平和脉冲波形
- 数字系统组件
- 数字逻辑运算
- 数字系统优势
- 数制
- 数制
- 二进制数表示
- 二进制运算
- 有符号二进制运算
- 八进制运算
- 十六进制运算
- 补码运算
- 进制转换
- 进制转换
- 二进制到十进制转换
- 十进制到二进制转换
- 二进制到八进制转换
- 八进制到二进制转换
- 八进制到十进制转换
- 十进制到八进制转换
- 十六进制到二进制转换
- 二进制到十六进制转换
- 十六进制到十进制转换
- 十进制到十六进制转换
- 八进制到十六进制转换
- 十六进制到八进制转换
- 二进制编码
- 二进制编码
- 8421 BCD码
- 余3码
- 格雷码
- ASCII码
- EBCDIC码
- 代码转换
- 错误检测与纠错码
- 逻辑门
- 逻辑门
- 与门
- 或门
- 非门
- 通用门
- 异或门
- 异或非门
- CMOS逻辑门
- 使用二极管电阻逻辑的或门
- 与门与或门
- 两级逻辑实现
- 阈值逻辑
- 布尔代数
- 布尔代数
- 布尔代数定律
- 布尔函数
- 德摩根定理
- SOP和POS形式
- POS到标准POS形式
- 最小化技术
- 卡诺图最小化
- 三变量卡诺图
- 四变量卡诺图
- 五变量卡诺图
- 六变量卡诺图
- 无关项条件
- 奎因-麦克斯韦方法
- 最小项和最大项
- 规范式和标准式
- 最大项表示
- 使用布尔代数化简
- 组合逻辑电路
- 数字组合电路
- 数字算术电路
- 多路复用器
- 多路复用器设计流程
- 多路复用器通用门
- 使用4:1多路复用器的2变量函数
- 使用8:1多路复用器的3变量函数
- 多路分解器
- 多路复用器与多路分解器
- 奇偶校验位生成器和检查器
- 比较器
- 编码器
- 键盘编码器
- 优先编码器
- 译码器
- 算术逻辑单元
- 7段LED显示器
- 代码转换器
- 代码转换器
- 二进制到十进制转换器
- 十进制到BCD码转换器
- BCD码到十进制转换器
- 二进制到格雷码转换器
- 格雷码到二进制转换器
- BCD码到余3码转换器
- 余3码到BCD码转换器
- 加法器
- 半加器
- 全加器
- 串行加法器
- 并行加法器
- 使用半加器的全加器
- 半加器与全加器
- 使用与非门的全加器
- 使用与非门的半加器
- 二进制加法器-减法器
- 减法器
- 半减器
- 全减器
- 并行减法器
- 使用2个半减器的全减器
- 使用与非门的半减器
- 时序逻辑电路
- 数字时序电路
- 时钟信号和触发
- 锁存器
- 移位寄存器
- 移位寄存器应用
- 二进制寄存器
- 双向移位寄存器
- 计数器
- 二进制计数器
- 非二进制计数器
- 同步计数器设计
- 同步计数器与异步计数器
- 有限状态机
- 算法状态机
- 触发器
- 触发器
- 触发器转换
- D触发器
- JK触发器
- T触发器
- SR触发器
- 带时钟的SR触发器
- 无时钟的SR触发器
- 带时钟的JK触发器
- JK触发器到T触发器
- SR触发器到JK触发器
- 触发方法:触发器
- 边沿触发触发器
- 主从JK触发器
- 竞争冒险现象
- A/D和D/A转换器
- 模数转换器
- 数模转换器
- DAC和ADC集成电路
- 逻辑门的实现
- 用与非门实现非门
- 用与非门实现或门
- 用与非门实现与门
- 用与非门实现或非门
- 用与非门实现异或门
- 用与非门实现异或非门
- 用或非门实现非门
- 用或非门实现或门
- 用或非门实现与门
- 用或非门实现与非门
- 用或非门实现异或门
- 用或非门实现异或非门
- 使用CMOS的与非/或非门
- 使用与非门的全减器
- 使用2:1多路复用器的与门
- 使用2:1多路复用器的或门
- 使用2:1多路复用器的非门
- 存储器设备
- 存储器设备
- RAM和ROM
- 高速缓存存储器设计
- 可编程逻辑器件
- 可编程逻辑器件
- 可编程逻辑阵列
- 可编程阵列逻辑
- 现场可编程门阵列
- 数字电子系列
- 数字电子系列
- CPU架构
- CPU架构
- 数字电子资源
- 数字电子 - 快速指南
- 数字电子 - 资源
- 数字电子 - 讨论
余3码到BCD码转换器
余3码到BCD码转换器是一种数字电子中的代码转换器,用于将XS-3码转换为等效的二进制编码十进制码。
因此,XS-3到BCD码转换器接收XS-3格式的数字代码,并生成BCD格式的等效数字代码。
余3码到BCD码转换器的真值表如下所示:
余3码 | BCD码 | ||||||
---|---|---|---|---|---|---|---|
X3 | X2 | X1 | X0 | B3 | B2 | B1 | B0 |
0 | 0 | 0 | 0 | X | X | X | X |
0 | 0 | 0 | 1 | X | X | X | X |
0 | 0 | 1 | 0 | X | X | X | X |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | X | X | X | X |
1 | 1 | 1 | 0 | X | X | X | X |
1 | 1 | 1 | 1 | X | X | X | X |
现在,我们将使用卡诺图方法简化此真值表,以获得输出位的布尔表达式。
BCD位B0的卡诺图
下图显示了BCD位B0的卡诺图简化。
此卡诺图给出以下布尔表达式:
$$\mathrm{B_{0} \: = \: \overline{X_{0}}}$$
BCD位B1的卡诺图
下图显示了BCD位B1的卡诺图简化。
此卡诺图给出以下布尔表达式:
$$\mathrm{B_{1} \: = \: \overline{X_{1}} \: X_{0} \: + \: X_{1} \: X_{0}}$$
BCD位B2的卡诺图
BCD位B2的卡诺图简化如下所示:
此卡诺图的简化给出以下布尔表达式:
$$\mathrm{B_{2} \: = \: \overline{X_{2}} \: \overline{X_{1}} \: + \: \overline{X_{2}} \: \overline{X_{0}} \: + \: X_{2} \: X_{1} \: X_{0}}$$
BCD位B3的卡诺图
BCD位B3的卡诺图简化在下图中所示:
通过简化此卡诺图,我们得到以下布尔表达式:
$$\mathrm{B_{3} \: = \: X_{3} \: X_{2} \: + \: X_{3} \: X_{1} \: X_{0}}$$
我们可以使用这些布尔表达式来实现数字逻辑电路以执行XS-3到BCD转换。
将XS-3码转换为等效BCD码的逻辑电路图,即余3码到BCD码转换器,如下所示:
这只是关于一些常用数字代码转换器,它们用于各种数字电子应用中。
广告