- 统计教程
- 首页
- 调整后的R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫不等式
- 卡方分布
- 卡方表
- 环状排列
- 整群抽样
- Cohen's kappa 系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel 分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽玛分布
- Kolmogorov-Smirnov 检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 离群值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) & 过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83 指数回归
- 转换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计学有用资源
- 统计学 - 讨论
统计 - 最佳点估计
点估计是指利用样本数据计算单个值(称为统计量),作为未知(固定或随机)总体参数的“最佳猜测”或“最佳估计”。更正式地说,它是将点估计量应用于数据。
公式
${MLE = \frac{S}{T}}$
${Laplace = \frac{S+1}{T+2}}$
${Jeffrey = \frac{S+0.5}{T+1}}$
${Wilson = \frac{S+ \frac{z^2}{2}}{T+z^2}}$
其中 −
${MLE}$ = 最大似然估计。
${S}$ = 成功次数。
${T}$ = 试验次数。
${z}$ = Z临界值。
示例
问题陈述 −
如果一枚硬币在9次试验中抛掷了4次正面,置信区间水平为99%,那么这枚硬币成功的最佳点是多少?
解答 −
成功次数(S) = 4,试验次数(T) = 9,置信区间水平(P) = 99% = 0.99。为了计算最佳点估计,让我们计算所有值 −
步骤1 −
$ {MLE = \frac{S}{T} \\[7pt] \, = \frac{4}{9} , \\[7pt] \, = 0.4444}$
步骤2 −
$ {Laplace = \frac{S+1}{T+2} \\[7pt] \, = \frac{4+1}{9+2} , \\[7pt] \, = \frac{5}{11}, \\[7pt] \, = 0.4545}$
步骤3 −
$ {Jeffrey = \frac{S+0.5}{T+1} \\[7pt] \, = \frac{4+0.5}{9+1} , \\[7pt] \, = \frac{4.5}{10}, \\[7pt] \, = 0.45}$
步骤4 −
从Z表中查找Z临界值。99%水平下的Z临界值(z) = 2.5758
步骤5 −
$ {Wilson = \frac{S+ \frac{z^2}{2}}{T+z^2} \\[7pt] \, = \frac{4+\frac{2.57582^2}{2}}{9+2.57582^2} , \\[7pt] \, = 0.468 }$
结果
因此,最佳点估计为0.468,因为MLE ≤ 0.5
计算器
广告