- 统计教程
- 首页
- 调整R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 圆排列
- 整群抽样
- 科恩的卡帕系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累计频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频率分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- 格姆贝尔分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽玛分布
- 柯尔莫哥洛夫-斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) & 过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-威纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83指数回归
- 转换
- 截尾均值
- I型和II型错误
- 方差
- 维恩图
- 大数弱定律
- Z表
- 统计实用资源
- 统计 - 讨论
统计 - 回归截距置信区间
回归截距置信区间是一种确定两个因素之间接近程度的方法,用于检查估计的可靠性。
公式
${R = \beta_0 \pm t(1 - \frac{\alpha}{2}, n-k-1) \times SE_{\beta_0} }$
其中 −
${ \beta_0 }$ = 回归截距。
${ k }$ = 预测变量个数。
${ n }$ = 样本量。
${ SE_{\beta_0} }$ = 标准误。
${ \alpha }$ = 置信区间百分比。
${ t }$ = t值。
示例
问题陈述
计算以下数据的回归截距置信区间。预测变量总数 (k) 为 1,回归截距 ${ \beta_0 }$ 为 5,样本量 (n) 为 10,标准误 ${ SE_{\beta_0} }$ 为 0.15。
解答
让我们考虑 99% 置信区间的情况。
步骤 1:计算 t 值,其中 ${ \alpha = 0.99 }$。
${ = t(1 - \frac{\alpha}{2}, n-k-1) \\[7pt] = t(1 - \frac{0.99}{2}, 10-1-1) \\[7pt] = t(0.005,8) \\[7pt] = 3.3554 }$
步骤 2:${ \ge }$ 回归截距
${ = \beta_0 + t(1 - \frac{\alpha}{2}, n-k-1) \times SE_{\beta_0} \\[7pt] = 5 - (3.3554 \times 0.15) \\[7pt] = 5 - 0.50331 \\[7pt] = 4.49669 }$
步骤 3:${ \le }$ 回归截距
${ = \beta_0 - t(1 - \frac{\alpha}{2}, n-k-1) \times SE_{\beta_0} \\[7pt] = 5 + (3.3554 \times 0.15) \\[7pt] = 5 + 0.50331 \\[7pt] = 5.50331 }$
因此,对于 99% 置信区间,回归截距置信区间为${ 4.49669 }$ 或 ${ 5.50331 }$。