- 统计学教程
- 主页
- 调整后R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 环状排列
- 整群抽样
- 科恩 Kappa 系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- 格姆贝尔分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- 柯尔莫哥洛夫-斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) & 过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83 指数回归
- 变换
- 截尾均值
- I型和II型错误
- 方差
- 维恩图
- 大数弱定律
- Z表
- 统计学有用资源
- 统计学 - 讨论
统计学 - 多项分布
多项实验是一个统计实验,它包含n次重复试验。每次试验都有离散数量的可能结果。在任何给定试验中,特定结果发生的概率是恒定的。
公式
${P_r = \frac{n!}{(n_1!)(n_2!)...(n_x!)} {P_1}^{n_1}{P_2}^{n_2}...{P_x}^{n_x}}$
其中 -
${n}$ = 事件数
${n_1}$ = 结果数,事件1
${n_2}$ = 结果数,事件2
${n_x}$ = 结果数,事件x
${P_1}$ = 事件1发生的概率
${P_2}$ = 事件2发生的概率
${P_x}$ = 事件x发生的概率
示例
问题陈述
三位牌手进行一系列比赛。玩家A赢得任何一场比赛的概率为20%,玩家B赢得比赛的概率为30%,玩家C赢得比赛的概率为50%。如果他们玩6场比赛,玩家A赢得1场,玩家B赢得2场,玩家C赢得3场的概率是多少?
解答
已知
${n}$ = 6 (总共6场比赛)
${n_1}$ = 1 (玩家A获胜)
${n_2}$ = 2 (玩家B获胜)
${n_3}$ = 3 (玩家C获胜)
${P_1}$ = 0.20 (玩家A获胜的概率)
${P_2}$ = 0.30 (玩家B获胜的概率)
${P_3}$ = 0.50 (玩家C获胜的概率)
将这些值代入公式,我们得到
${ P_r = \frac{n!}{(n_1!)(n_2!)...(n_x!)} {P_1}^{n_1}{P_2}^{n_2}...{P_x}^{n_x} , \\[7pt] \ P_r(A=1, B=2, C=3)= \frac{6!}{1!2!3!}(0.2^1)(0.3^2)(0.5^3) , \\[7pt] \ = 0.135 }$
广告