- 统计学教程
- 首页
- 调整后的R平方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 圆排列
- 整群抽样
- 科恩Kappa系数
- 组合
- 可重复组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频率分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 离群值函数
- 排列
- 可重复排列
- 饼图
- 泊松分布
- 合并方差(r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力(Cp)和过程性能(Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误(SE)
- 标准正态分布表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83 指数回归
- 转换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计学有用资源
- 统计学 - 讨论
统计学 - TI 83 指数回归
TI 83 指数回归用于计算最适合一组不确定变量之间相关性的方程。
公式
${ y = a \times b^x}$
其中 -
${a, b}$ = 指数的系数。
示例
问题陈述
计算以下数据点的指数回归方程(y)。
时间(分钟), Ti | 0 | 5 | 10 | 15 |
---|---|---|---|---|
温度(°F), Te | 140 | 129 | 119 | 112 |
解决方案
让我们将a和b视为指数回归的系数。
步骤1
${ b = e^{ \frac{n \times \sum Ti log(Te) - \sum (Ti) \times \sum log(Te) } {n \times \sum (Ti)^2 - \times (Ti) \times \sum (Ti) }} } $
其中 -
${n}$ = 项目总数。
${ \sum Ti log(Te) = 0 \times log(140) + 5 \times log(129) + 10 \times log(119) + 15 \times log(112) = 62.0466 \\[7pt] \sum log(L2) = log(140) + log(129) + log(119) + log(112) = 8.3814 \\[7pt] \sum Ti = (0 + 5 + 10 + 15) = 30 \\[7pt] \sum Ti^2 = (0^2 + 5^2 + 10^2 + 15^2) = 350 \\[7pt] \implies b = e^{\frac {4 \times 62.0466 - 30 \times 8.3814} {4 \times 350 - 30 \times 30}} \\[7pt] = e^{-0.0065112} \\[7pt] = 0.9935 } $
步骤2
${ a = e^{ \frac{\sum log(Te) - \sum (Ti) \times log(b)}{n} } \\[7pt] = e^{\frac{8.3814 - 30 \times log(0.9935)}{4}} \\[7pt] = e^2.116590964 \\[7pt] = 8.3028 } $
步骤3
将a和b的值代入指数回归方程(y),得到。
${ y = a \times b^x \\[7pt] = 8.3028 \times 0.9935^x } $