统计学 - 十分位数统计



将给定数据或值序列的随机分布划分为十个频率相似的组的方法称为十分位数。

公式

${D_i = l + \frac{h}{f}(\frac{iN}{10} - c); i = 1,2,3...,9}$

其中:

  • ${l}$ = 十分位数组的下限。

  • ${h}$ = 十分位数组的宽度。

  • ${f}$ = 十分位数组的频率。

  • ${N}$ = 观察值的总数。

  • ${c}$ = 十分位数组之前的累积频率。

示例

问题陈述

根据下表计算分布的十分位数

 fiFi
[50-60]88
[60-60]1018
[70-60]1634
[80-60]1448
[90-60]1058
[100-60]563
[110-60]265
 65 

解答

计算第一十分位数

$ {\frac{65 \times 1}{10} = 6.5 \\[7pt] \, D_1= 50 + \frac{6.5 - 0}{8} \times 10 , \\[7pt] \, = 58.12}$

计算第二十分位数

$ {\frac{65 \times 2}{10} = 13 \\[7pt] \, D_2= 60 + \frac{13 - 8}{10} \times 10 , \\[7pt] \, = 65}$

计算第三十分位数

$ {\frac{65 \times 3}{10} = 19.5 \\[7pt] \, D_3= 70 + \frac{19.5 - 18}{16} \times 10 , \\[7pt] \, = 70.94}$

计算第四十分位数

$ {\frac{65 \times 4}{10} = 26 \\[7pt] \, D_4= 70 + \frac{26 - 18}{16} \times 10 , \\[7pt] \, = 75}$

计算第五十分位数

$ {\frac{65 \times 5}{10} = 32.5 \\[7pt] \, D_5= 70 + \frac{32.5 - 18}{16} \times 10 , \\[7pt] \, = 79.06}$

计算第六十分位数

$ {\frac{65 \times 6}{10} = 39 \\[7pt] \, D_6= 70 + \frac{39 - 34}{14} \times 10 , \\[7pt] \, = 83.57}$

计算第七十分位数

$ {\frac{65 \times 7}{10} = 45.5 \\[7pt] \, D_7= 80 + \frac{45.5 - 34}{14} \times 10 , \\[7pt] \, = 88.21}$

计算第八十分位数

$ {\frac{65 \times 8}{10} = 52 \\[7pt] \, D_8= 90 + \frac{52 - 48}{10} \times 10 , \\[7pt] \, = 94}$

计算第九十分位数

$ {\frac{65 \times 9}{10} = 58.5 \\[7pt] \, D_9= 100 + \frac{58.5 - 58}{5} \times 10 , \\[7pt] \, = 101}$
广告