- 统计学教程
- 首页
- 调整后的R平方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩Kappa系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差(r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力(Cp)和过程性能(Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误(SE)
- 标准正态分布表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI-83指数回归
- 转换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计学有用资源
- 统计学 - 讨论
统计学 - 泊松分布
泊松分布是离散概率分布,在统计工作中广泛使用。这种分布是由法国数学家西蒙·丹尼斯·泊松在1837年提出的,并以他的名字命名。泊松分布用于事件发生的概率很小的情况,即事件很少发生。例如,制造企业中出现缺陷产品的概率很小,一年内发生地震的概率很小,道路上发生事故的概率很小,等等。所有这些都是事件发生的概率很小的例子。
泊松分布由以下概率函数定义和给出
公式
${P(X=x)} = {e^{-m}}.\frac{m^x}{x!}$
其中 -
${m}$ = 成功概率。
${P(X=x)}$ = x次成功的概率。
示例
问题陈述
一位别针生产商发现,正常情况下,他5%的产品有缺陷。他将别针包装成100枚一包,并保证不超过4枚别针有缺陷。一包别针满足保证质量的概率是多少?[已知:${e^{-m}} = 0.0067$]
解决方案
设p = 缺陷别针的概率 = 5% = $\frac{5}{100}$。已知
${n} = 100, {p} = \frac{5}{100} , \\[7pt] \ \Rightarrow {np} = 100 \times \frac{5}{100} = {5}$
泊松分布表示为
${P(X=x)} = {e^{-m}}.\frac{m^x}{x!}$
所需概率 = P [包装满足保证]
= P [包装包含最多4个缺陷]
= P (0) +P (1) +P (2) +P (3) +P (4)
$ = {e^{-5}}.\frac{5^0}{0!} + {e^{-5}}.\frac{5^1}{1!} + {e^{-5}}.\frac{5^2}{2!} + {e^{-5}}.\frac{5^3}{3!} +{e^{-5}}.\frac{5^4}{4!}, \\[7pt] \ = {e^{-5}}[1+\frac{5}{1}+\frac{25}{2}+\frac{125}{6}+\frac{625}{24}] , \\[7pt] \ = 0.0067 \times 65.374 = 0.438$
广告