- 统计教程
- 主页
- 调整R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 环状排列
- 整群抽样
- 科恩 Kappa 系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 统计分位数
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- 格姆贝尔分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- 柯尔莫哥洛夫-斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 离群值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83 指数回归
- 变换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计有用资源
- 统计 - 讨论
统计 - 信度系数
通过对相同个体进行两次测量并计算两组测量的相关性来获得的测试或测量仪器准确性的度量。
信度系数的定义和计算公式如下:
公式
${信度系数,RC = (\frac{N}{(N-1)}) \times (\frac{(总方差 - 方差和)}{总方差})}$
其中:
${N}$ = 任务数量
示例
问题陈述
一项任务由三个人 (P) 完成,他们被分配了三个不同的任务 (T)。求信度系数?
P0-T0 = 10 P1-T0 = 20 P0-T1 = 30 P1-T1 = 40 P0-T2 = 50 P1-T2 = 60
解答
已知,学生人数 (P) = 3,任务数量 (N) = 3。为了求信度系数,请按照以下步骤操作:
步骤 1
让我们首先计算人员及其任务的平均分数。
The average score of Task (T0) = 10 + 20/2 = 15 The average score of Task (T1) = 30 + 40/2 = 35 The average score of Task (T2) = 50 + 60/2 = 55
步骤 2
接下来,计算方差。
Variance of P0-T0 and P1-T0: Variance = square (10-15) + square (20-15)/2 = 25 Variance of P0-T1 and P1-T1: Variance = square (30-35) + square (40-35)/2 = 25 Variance of P0-T2 and P1-T2: Variance = square (50-55) + square (50-55)/2 = 25
步骤 3
现在,计算P0-T0和P1-T0,P0-T1和P1-T1,P0-T2和P1-T2的个体方差。为了确定个体方差值,我们需要将所有上述计算出的差异值相加。
Total of Individual Variance = 25+25+25=75
步骤 4
计算总差异
Variance= square ((P0-T0) - normal score of Person 0) = square (10-15) = 25 Variance= square ((P1-T0) - normal score of Person 0) = square (20-15) = 25 Variance= square ((P0-T1) - normal score of Person 1) = square (30-35) = 25 Variance= square ((P1-T1) - normal score of Person 1) = square (40-35) = 25 Variance= square ((P0-T2) - normal score of Person 2) = square (50-55) = 25 Variance= square ((P1-T2) - normal score of Person 2) = square (60-55) = 25
现在,将所有值相加并计算总差异。
Total Variance= 25+25+25+25+25+25 = 150
步骤 5
最后,将这些值代入下面的公式中:
${信度系数,RC = (\frac{N}{(N-1)}) \times (\frac{(总方差 - 方差和)}{总方差}) \\[7pt] = \frac{3}{(3-1)} \times \frac{(150-75)}{150} \\[7pt] = 0.75 }$
广告