- 统计教程
- 首页
- 调整 R 方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术范围
- 条形图
- 最佳点估计
- β 分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 环状排列
- 整群抽样
- 科恩 Kappa 系数
- 组合
- 可重复组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F 分布
- F 检验表
- 阶乘
- 频数分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel 分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov 检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例 Z 检验
- 离群值函数
- 排列
- 可重复排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程 sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生 t 检验
- 平方和
- t 分布表
- TI-83 指数回归
- 变换
- 截尾均值
- I 型和 II 型错误
- 方差
- 维恩图
- 大数弱定律
- Z 表
- 统计有用资源
- 统计 - 讨论
统计 - 逆伽马分布
逆伽马分布是具有正形状参数${\alpha, \beta}$和位置参数${\mu}$的伽马概率密度函数的倒数。${\alpha}$控制高度。${\alpha}$越高,概率密度函数 (PDF) 就越高。${\beta}$控制速度。其定义如下式所示。
公式
${f(x) = \frac{x^{-(\alpha+1)}e^{\frac{-1}{\beta x}}}{\Gamma(\alpha) \beta^\alpha} \\[7pt] \, 其中 x > 0}$
其中 -
${\alpha}$ = 正形状参数。
${\beta}$ = 正形状参数。
${x}$ = 随机变量。
下图显示了具有不同参数组合的概率密度函数。
广告