- 统计教程
- 首页
- 调整R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩 Kappa 系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel 分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生 t 检验
- 平方和
- t 分布表
- TI-83 指数回归
- 变换
- 截尾均值
- I 类和 II 类错误
- 方差
- 维恩图
- 大数弱定律
- Z 表
- 统计有用资源
- 统计 - 讨论
统计 - 逻辑回归
逻辑回归是一种统计方法,用于分析一个或多个自变量决定结果的数据集。结果是用二分变量(只有两个可能的结果)来衡量的。
公式
${\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}}$
其中 −
响应 - 特征的存在/不存在。
预测变量 - 每个案例观察到的数值变量
${\beta = 0 \Rightarrow }$ P(存在)在 x 的每个水平上都是相同的。
${\beta \gt 0 \Rightarrow }$ P(存在)随着 x 的增加而增加
${\beta \lt 0 \Rightarrow }$ P(存在)随着 x 的增加而减少。
示例
问题陈述
解决以下问题的逻辑回归:用于治疗偏头痛的瑞扎特里坦
响应 - 2 小时内完全缓解疼痛(是/否)。
预测变量 - 剂量 (mg):安慰剂 (0)、2.5、5、10
剂量 | 患者数 | 缓解人数 | 缓解率 |
---|---|---|---|
0 | 67 | 2 | 3.0 |
2.5 | 75 | 7 | 9.3 |
5 | 130 | 29 | 22.3 |
10 | 145 | 40 | 27.6 |
解决方案
已知 ${\alpha = -2.490} 和 ${\beta = .165},我们有以下数据
$ {\pi(0) = \frac{e^{\alpha + \beta \times 0}}{1 + e^{\alpha + \beta \times 0}} \\[7pt] \, = \frac{e^{-2.490 + 0}}{1 + e^{-2.490}} \\[7pt] \\[7pt] \, = 0.03 \\[7pt] \pi(2.5) = \frac{e^{\alpha + \beta \times 2.5}}{1 + e^{\alpha + \beta \times 2.5}} \\[7pt] \, = \frac{e^{-2.490 + .165 \times 2.5}}{1 + e^{-2.490 + .165 \times 2.5}} \\[7pt] \, = 0.09 \\[7pt] \\[7pt] \pi(5) = \frac{e^{\alpha + \beta \times 5}}{1 + e^{\alpha + \beta \times 5}} \\[7pt] \, = \frac{e^{-2.490 + .165 \times 5}}{1 + e^{-2.490 + .165 \times 5}} \\[7pt] \, = 0.23 \\[7pt] \\[7pt] \pi(10) = \frac{e^{\alpha + \beta \times 10}}{1 + e^{\alpha + \beta \times 10}} \\[7pt] \, = \frac{e^{-2.490 + .165 \times 10}}{1 + e^{-2.490 + .165 \times 10}} \\[7pt] \, = 0.29 }$
剂量(${x}$) | ${\pi(x)}$ |
---|---|
0 | 0.03 |
2.5 | 0.09 |
5 | 0.23 |
10 | 0.29 |
广告