- 统计教程
- 主页
- 调整R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 圆排列
- 整群抽样
- 科恩 Kappa 系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频率分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- 格朗布尔分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均偏差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差(r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力(Cp)和过程性能(Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- Shannon-Wiener多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误(SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83指数回归
- 变换
- 截尾均值
- I型和II型错误
- 方差
- 维恩图
- 大数弱定律
- Z表
- 统计有用资源
- 统计 - 讨论
统计 - 相关系数
相关系数
相关系数是衡量一个变量的值的变化在多大程度上可以预测另一个变量的值的变化的统计指标。在正相关的变量中,值会同步增加或减少。在负相关的变量中,一个变量的值增加时,另一个变量的值会减少。
相关系数表示为+1和-1之间的值。
系数+1表示完美的正相关:一个变量的值的变化将预测第二个变量在相同方向上的变化。
系数-1表示完美的负相关:一个变量的值的变化预测第二个变量在相反方向上的变化。较低程度的相关性表示为非零小数。系数为零表示变量波动之间没有明显的关联。
公式
${r = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{[N\sum x^2 - (\sum x)^2][N\sum y^2 - (\sum y)^2]}} }$
其中:
${N}$ = 分数对的数量
${\sum xy}$ = 成对分数的乘积之和。
${\sum x}$ = x分数之和。
${\sum y}$ = y分数之和。
${\sum x^2}$ = x分数的平方和。
${\sum y^2}$ = y分数的平方和。
示例
问题陈述
计算下列数据的相关系数
X | Y |
---|---|
1 | 2 |
3 | 5 |
4 | 5 |
4 | 8 |
解答
${ \sum xy = (1)(2) + (3)(5) + (4)(5) + (4)(8) = 69 \\[7pt] \sum x = 1 + 3 + 4 + 4 = 12 \\[7pt] \sum y = 2 + 5 + 5 + 8 = 20 \\[7pt] \sum x^2 = 1^2 + 3^2 + 4^2 + 4^2 = 42 \\[7pt] \sum y^2 = 2^2 + 5^2 + 5^2 + 8^2 = 118 \\[7pt] r= \frac{69 - \frac{(12)(20)}{4}}{\sqrt{(42 - \frac{(12)^2}{4})(118-\frac{(20)^2}{4}}} \\[7pt] = .866 }$
广告