- 统计学教程
- 主页
- 调整后的R平方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩Kappa系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频率分布
- 伽马分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总平均数
- Gumbel分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽马分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽马分布
- 逻辑回归
- 麦克尼马尔检验
- 平均差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列和偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) & 过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态分布表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI 83指数回归
- 转换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计学有用资源
- 统计学 - 讨论
统计学 - 中心极限定理
如果样本所来自的总体是一个正态总体,那么**样本均值**将等于总体均值,并且**抽样分布**将是正态的。当总体更偏斜时,如图所示,那么**抽样分布**将趋向于更接近正态分布,前提是样本量足够大(即大于30)。
根据**中心极限定理**,对于样本量大于30的足够大的样本,**抽样分布**的形状将越来越像**正态分布**,而不管母体总体的形状如何。该定理解释了**总体分布**和**抽样分布**之间的关系。它强调了一个事实,即如果存在足够多的样本集,那么均值的**抽样分布**将接近**正态分布**。中心极限定理的重要性已被理查德·I·莱文用以下话概括:
中心极限定理的意义在于,它允许我们使用样本统计量来推断总体参数,而无需了解该总体频率分布的形状,除了我们从样本中获得的信息之外。
广告