- 统计教程
- 首页
- 调整R方
- 方差分析
- 算术平均数
- 算术中位数
- 算术众数
- 算术极差
- 条形图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 圆排列
- 整群抽样
- 科恩Kappa系数
- 组合
- 有放回组合
- 比较图表
- 连续均匀分布
- 连续数列算术平均数
- 连续数列算术中位数
- 连续数列算术众数
- 累积频率
- 变异系数
- 相关系数
- 累积图
- 累积泊松分布
- 数据收集
- 数据收集 - 问卷设计
- 数据收集 - 观察法
- 数据收集 - 案例研究法
- 数据模式
- 十分位数统计
- 离散数列算术平均数
- 离散数列算术中位数
- 离散数列算术众数
- 点图
- 指数分布
- F分布
- F检验表
- 阶乘
- 频数分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 总均值
- Gumbel分布
- 调和平均数
- 调和数
- 谐振频率
- 直方图
- 超几何分布
- 假设检验
- 个体数列算术平均数
- 个体数列算术中位数
- 个体数列算术众数
- 区间估计
- 逆伽玛分布
- Kolmogorov-Smirnov检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔检验
- 平均差
- 均值差异
- 多项分布
- 负二项分布
- 正态分布
- 奇排列与偶排列
- 单比例Z检验
- 异常值函数
- 排列
- 有放回排列
- 饼图
- 泊松分布
- 合并方差 (r)
- 功效计算器
- 概率
- 概率加法定理
- 概率乘法定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程Sigma
- 二次回归方程
- 定性数据与定量数据
- 四分位差
- 经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 信度系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样本计划
- 抽样方法
- 散点图
- 香农-维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误 (SE)
- 标准正态表
- 统计显著性
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生t检验
- 平方和
- t分布表
- TI-83指数回归
- 变换
- 截尾均值
- I型和II型错误
- 方差
- 韦恩图
- 大数弱定律
- Z表
- 统计有用资源
- 统计 - 讨论
统计 - 总均值
当样本量相等时,换句话说,每个样本可能包含五个值,或者每个样本包含n个值。总均值与样本均值的均值相同。
公式
$\overline{X} = \frac{\sum x}{N}$
其中:
$N$ = 样本组总数。
$\sum x$ = 所有样本组均值的和。
示例
问题陈述
确定每个组或样本组的均值。使用以下数据作为样本以确定均值和总均值。
Jackson | 1 | 6 | 7 | 10 | 4 |
---|---|---|---|---|---|
Thomas | 5 | 2 | 8 | 14 | 6 |
Garrard | 8 | 2 | 9 | 12 | 7 |
解决方案
步骤1:计算所有均值
$\overline{x}_1 = \frac{1+6+7+10+4}{5} = \frac{28}{5} = 5.6 \\[7pt] \overline{x}_2 = \frac{5+2+8+14+6}{5} = \frac{35}{5} = 7 \\[7pt] \overline{x}_3 = \frac{8+2+9+12+7}{5} = \frac{38}{5} = 7.6 $
步骤2:将总和除以组数以确定总均值。在样本中,共有三组。
$\overline{X} = \frac{5.6+7+7.6}{3} = \frac{20.2}{3} \\[7pt] = 6.73 $
广告