统计学 - 相对标准偏差



在概率论和统计学中,变异系数(CV),也称为相对标准偏差(RSD),是概率分布或频率分布的离散度的标准化度量。

相对标准偏差RSD由以下概率函数定义和给出

公式

${100 \times \frac{s}{\bar x}}$

其中 -

  • ${s}$ = 样本标准差

  • ${\bar x}$ = 样本均值

示例

问题陈述

求以下一组数字的RSD:49、51.3、52.7、55.8,标准差为2.8437065。

解决方案

步骤1 - 样本标准差:2.8437065(或四舍五入到小数点后两位为2.84)。

步骤2 - 将步骤1乘以100。暂时保留此数字。

${2.84 \times 100 = 284}$

步骤3 - 求样本均值${\bar x}$。样本均值为

${\frac{(49 + 51.3 + 52.7 + 55.8)}{4} = \frac{208.8}{4} = 52.2.}$

步骤4将步骤2除以步骤3的绝对值。

${\frac{284}{|52.2|} = 5.44.}$

RSD为

${52.2 \pm 5.4}$%

请注意,RSD以百分比表示。

广告